Spaces:
Sleeping
Sleeping
File size: 8,019 Bytes
688da1c 7cd2bf7 688da1c 6082ac9 688da1c bd800ec bd5d4e1 688da1c bd5d4e1 83d55b7 bd5d4e1 688da1c bd5d4e1 688da1c bd5d4e1 688da1c bd5d4e1 688da1c bd5d4e1 325b08e bd5d4e1 325b08e bd5d4e1 325b08e bd5d4e1 325b08e 688da1c 36c08ed 688da1c bd5d4e1 688da1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import gradio as gr
from groq import Groq
import os
from PIL import Image, ImageDraw
import io
from deep_translator import GoogleTranslator
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
import whisper
import gradio as gr
from groq import Groq
import os
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
import pickle
import whisper
import requests
import time
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# Replace with your actual API key
os.environ['hface']
H_key = os.getenv('hface')
API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2"
headers = {"Authorization": f"Bearer {H_key}"}
# Load the custom model for image generation
# base = "stabilityai/stable-diffusion-xl-base-1.0"
# repo = "ByteDance/SDXL-Lightning"
# ckpt = "sdxl_lightning_4step_unet.safetensors" # Ensure the correct checkpoint
# # Load the custom UNet and set up the pipeline
# unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float16)
# unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
# pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cpu")
# pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
#key groq
os.environ['gq']
api_key = os.getenv('gq')
client = Groq(api_key=api_key)
def query(payload, max_retries=5):
for attempt in range(max_retries):
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 503:
print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}")
estimated_time = min(response.json().get("estimated_time", 60), 60)
time.sleep(estimated_time)
continue
if response.status_code != 200:
print(f"Error: Received status code {response.status_code}")
print(f"Response: {response.text}")
return None
return response.content
print(f"Failed to generate image after {max_retries} attempts.")
return None
def generate_image_from_prompt(prompt):
image_bytes = query({"inputs": prompt})
if image_bytes is None:
return None
try:
image = Image.open(io.BytesIO(image_bytes)) # Opening the image from bytes
return image
except Exception as e:
print(f"Error: {e}")
return None
# Function to transcribe, translate, and generate an image
def process_audio(audio_path, generate_image):
if audio_path is None:
return "Please upload an audio file.", None, None
# Step 1: Transcribe audio
try:
with open(audio_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(os.path.basename(audio_path), file.read()),
model="whisper-large-v3",
language="ta",
response_format="verbose_json",
)
tamil_text = transcription.text
except Exception as e:
return f"An error occurred during transcription: {str(e)}", None, None
# Step 2: Translate Tamil to English
try:
translator = GoogleTranslator(source='ta', target='en')
translation = translator.translate(tamil_text)
except Exception as e:
return tamil_text, f"An error occurred during translation: {str(e)}", None
# Step 3: Generate image (if selected)
if generate_image:
try:
# Use the custom model and pipeline to generate an image
#img = pipe(translation, num_inference_steps=4, guidance_scale=0).images[0]
img=generate_image_from_prompt(translation)
return tamil_text, translation, img
except Exception as e:
return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
return tamil_text, translation, None
def chatbox(prompt):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama-3.2-90b-text-preview"
)
chatbot_response = chat_completion.choices[0].message.content
except Exception as e:
return f"An error occurred during chatbot interaction: {str(e)}", None
try:
img=generate_image_from_prompt(prompt)
except Exception as e:
return chatbot_response, None
return chatbot_response, img
# Function for direct prompt to image generation
# Assuming your 'process_audio' and 'generate_image_from_prompt' functions are defined elsewhere
# Gradio interface with the requested customizations
with gr.Blocks(css="""
.gradio-container {background-color: #D8D2C2;}
.btn-red {background-color: red; color: white;}
.gr-button:hover {color: white !important;}
.gr-button {color: black !important;}
.gr-textbox {color: black !important;}
.gr-Tab {color: black !important;} /* Tab text color set to black */
""") as iface:
# Title
gr.Markdown("<h1 style='text-align: center; color:black;'>TransArt - Multimodal Application</h1>")
# First Tab: Audio to Text -> Image
with gr.Tab("Audio to Text"):
gr.Markdown("<h3 style='text-align: center; color:black;'>Upload audio file, translate and generate an image</h3>")
# Audio input and processing button
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
generate_image_checkbox = gr.Checkbox(label="Generate Image", value=False)
# Outputs for transcription, translation, and image
outputs = [
gr.Textbox(label="Tamil Transcription"),
gr.Textbox(label="English Translation"),
gr.Image(label="Generated Image") # Expecting an image output
]
# Button for processing audio
btn = gr.Button("Proceed Audio", elem_classes="btn-red")
# Bind the correct function that returns transcription, translation, and an image
btn.click(fn=process_audio, inputs=[audio_input, generate_image_checkbox], outputs=outputs)
# Second Tab: Direct Prompt to Image Generation
with gr.Tab("Prompt to Image"):
gr.Markdown("<h3 style='text-align: center; color:black;'>Input a prompt and generate an image</h3>")
# Text input for the prompt
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=5)
# Image output
image_output = gr.Image(label="Generated Image") # Expecting an image output
# Button for generating the image from the prompt
btn_image = gr.Button("Proceed Image Generation", elem_classes="btn-red")
# Bind the correct function that returns an image
btn_image.click(fn=generate_image_from_prompt, inputs=prompt_input, outputs=image_output)
#third tab: Direct prompt
with gr.Tab("Chatbot - image generation"):
gr.Markdown("<h2 style='text-align: center; color:black;'>Input a prompt and generate an image</h2>")
prompt_input=gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=2)
# Image output
output = [
gr.Textbox(label="Chatbot - response"),
gr.Image(label="Generated Image") # Expecting an image output
]
# Expecting an image output
# chatbox_output =
btn_image = gr.Button("Chatbot Response Generation", elem_classes="btn-red")
# Bind the correct function that returns an image
btn_image.click(fn=chatbox, inputs=prompt_input, outputs=output)
# Launch the interface
iface.launch(server_name="0.0.0.0")
|