Sriv890's picture
Update app.py
6082ac9 verified
import gradio as gr
import gradio as gr
from groq import Groq
import os
from PIL import Image, ImageDraw
import io
from deep_translator import GoogleTranslator
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
import whisper
import gradio as gr
from groq import Groq
import os
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
import pickle
import whisper
import requests
import time
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# Replace with your actual API key
os.environ['hface']
H_key = os.getenv('hface')
API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2"
headers = {"Authorization": f"Bearer {H_key}"}
# Load the custom model for image generation
# base = "stabilityai/stable-diffusion-xl-base-1.0"
# repo = "ByteDance/SDXL-Lightning"
# ckpt = "sdxl_lightning_4step_unet.safetensors" # Ensure the correct checkpoint
# # Load the custom UNet and set up the pipeline
# unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float16)
# unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
# pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cpu")
# pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
#key groq
os.environ['gq']
api_key = os.getenv('gq')
client = Groq(api_key=api_key)
def query(payload, max_retries=5):
for attempt in range(max_retries):
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 503:
print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}")
estimated_time = min(response.json().get("estimated_time", 60), 60)
time.sleep(estimated_time)
continue
if response.status_code != 200:
print(f"Error: Received status code {response.status_code}")
print(f"Response: {response.text}")
return None
return response.content
print(f"Failed to generate image after {max_retries} attempts.")
return None
def generate_image_from_prompt(prompt):
image_bytes = query({"inputs": prompt})
if image_bytes is None:
return None
try:
image = Image.open(io.BytesIO(image_bytes)) # Opening the image from bytes
return image
except Exception as e:
print(f"Error: {e}")
return None
# Function to transcribe, translate, and generate an image
def process_audio(audio_path, generate_image):
if audio_path is None:
return "Please upload an audio file.", None, None
# Step 1: Transcribe audio
try:
with open(audio_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(os.path.basename(audio_path), file.read()),
model="whisper-large-v3",
language="ta",
response_format="verbose_json",
)
tamil_text = transcription.text
except Exception as e:
return f"An error occurred during transcription: {str(e)}", None, None
# Step 2: Translate Tamil to English
try:
translator = GoogleTranslator(source='ta', target='en')
translation = translator.translate(tamil_text)
except Exception as e:
return tamil_text, f"An error occurred during translation: {str(e)}", None
# Step 3: Generate image (if selected)
if generate_image:
try:
# Use the custom model and pipeline to generate an image
#img = pipe(translation, num_inference_steps=4, guidance_scale=0).images[0]
img=generate_image_from_prompt(translation)
return tamil_text, translation, img
except Exception as e:
return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
return tamil_text, translation, None
def chatbox(prompt):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama-3.2-90b-text-preview"
)
chatbot_response = chat_completion.choices[0].message.content
except Exception as e:
return f"An error occurred during chatbot interaction: {str(e)}", None
try:
img=generate_image_from_prompt(prompt)
except Exception as e:
return chatbot_response, None
return chatbot_response, img
# Function for direct prompt to image generation
# Assuming your 'process_audio' and 'generate_image_from_prompt' functions are defined elsewhere
# Gradio interface with the requested customizations
with gr.Blocks(css="""
.gradio-container {background-color: #D8D2C2;}
.btn-red {background-color: red; color: white;}
.gr-button:hover {color: white !important;}
.gr-button {color: black !important;}
.gr-textbox {color: black !important;}
.gr-Tab {color: black !important;} /* Tab text color set to black */
""") as iface:
# Title
gr.Markdown("<h1 style='text-align: center; color:black;'>TransArt - Multimodal Application</h1>")
# First Tab: Audio to Text -> Image
with gr.Tab("Audio to Text"):
gr.Markdown("<h3 style='text-align: center; color:black;'>Upload audio file, translate and generate an image</h3>")
# Audio input and processing button
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
generate_image_checkbox = gr.Checkbox(label="Generate Image", value=False)
# Outputs for transcription, translation, and image
outputs = [
gr.Textbox(label="Tamil Transcription"),
gr.Textbox(label="English Translation"),
gr.Image(label="Generated Image") # Expecting an image output
]
# Button for processing audio
btn = gr.Button("Proceed Audio", elem_classes="btn-red")
# Bind the correct function that returns transcription, translation, and an image
btn.click(fn=process_audio, inputs=[audio_input, generate_image_checkbox], outputs=outputs)
# Second Tab: Direct Prompt to Image Generation
with gr.Tab("Prompt to Image"):
gr.Markdown("<h3 style='text-align: center; color:black;'>Input a prompt and generate an image</h3>")
# Text input for the prompt
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=5)
# Image output
image_output = gr.Image(label="Generated Image") # Expecting an image output
# Button for generating the image from the prompt
btn_image = gr.Button("Proceed Image Generation", elem_classes="btn-red")
# Bind the correct function that returns an image
btn_image.click(fn=generate_image_from_prompt, inputs=prompt_input, outputs=image_output)
#third tab: Direct prompt
with gr.Tab("Chatbot - image generation"):
gr.Markdown("<h2 style='text-align: center; color:black;'>Input a prompt and generate an image</h2>")
prompt_input=gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=2)
# Image output
output = [
gr.Textbox(label="Chatbot - response"),
gr.Image(label="Generated Image") # Expecting an image output
]
# Expecting an image output
# chatbox_output =
btn_image = gr.Button("Chatbot Response Generation", elem_classes="btn-red")
# Bind the correct function that returns an image
btn_image.click(fn=chatbox, inputs=prompt_input, outputs=output)
# Launch the interface
iface.launch(server_name="0.0.0.0")