GenerativeChatBot / README_Ru.md
StKirill's picture
Update README_Ru.md
07163df verified
|
raw
history blame
14.9 kB

Введение

В этом репозитории методы обработки естественного языка (NLP) используются для изучения стиля речи Рейчел из сериала "Друзья", проведения мультиязыкового анализа английского языка и обучения нейронной сети общению в стиле Рейчел. Перенос стиля очень популярен в НЛП и сейчас используется в самых разных сферах, от образования до персонализации электронных помощников. А с развитием больших моделей-трансформеров, которые демонстрируют выдающиеся способности в понимании естественного языка и имитации самых разных стилей, передача стиля вышла на новый уровень. Сегодня большие языковые модели, такие как GPT3, благодаря своим объемам и миллиардам параметров способны идеально изучить все особенности обучающей выборки (т. е. обучить распределению) и сгенерировать реалистичный текст в определенном стиле. В этом посте я исследую возможности языковых моделей для генерации текста в стиле Рейчел из знаменитого сериала "Друзья". Для этого используется корпус английских транскриптов сериала, который был собран для поиска чатбота и обучения двуязычных моделей для общения в стиле Рейчел Грин. Кроме того, я провела анализ стиля, изучила особенности речи Рейчел. Таким образом, проект можно условно разделить на 3 части:

  • Cбор данных
  • Стилистический анализ речи персонажей
  • Фреймворк для обучения моделей, которые пишут текст в стиле Рейчел. Весь код можно найти в этом репозитории HF.

Данные

Выбор персонажа

Я решил продолжить использовать сериал, на котором остановился в предыдущем проекте, ситком "Друзья", который шел с 1994 по 2004 год. Несмотря на свой возраст, он остается популярным и по сей день. Этот комедийный сериал рассказывает о жизни шести друзей (Росс, Фиби, Моника, Рейчел, Джоуи и Чендлер), которые живут в Нью-Йорке и постоянно попадают в какие-то неприятности и забавные ситуации. Почему мы выбрали именно этот сериал? По трем причинам:

  1. Я нашел в открытом доступе расшифровки 236 эпизодов. Это очень много данных, которые я могу использовать для обучения языковой модели.

  2. В сериале есть диалоги не одного, а целых шести персонажей, что открывает мне возможности для сравнительного анализа

  3. Это популярный сериал, который многие из нас смотрели и хорошо знают. Это значит, что я могу сделать предположения о данных (например, Фиби говорит более простыми словами и т. д.) и оценить реалистичность стиля сгенерированного текста, основываясь на своем опыте просмотра.

Сбор данных

Оригинальные транскрипты, которые я взял из Интернета, были на английском языке. Затем я выполнил следующую предварительную обработку текста:

  1. Во-первых, я очистил данные от мелких графемных ошибок, характерных для транскриптов. Например, если персонаж говорил что-то длинное, его слова могли содержать повторы гласных для имитации длинного звука ("nooooooooooooooooooooooooooooooooooooooooooooooooo").

  2. Во-вторых, я заметил, что некоторые слова содержат повторы одного и того же слова для комичности. Я также удалял такие повторы, оставляя только одну копию повторяющегося слова.

  3. В-третьих, поскольку я хотел передать стиль, присущий каждому персонажу, я отбросил общие фразы, используемые всеми 6 главными героями ("Знаете что!", "О Боже!" и т. д.).

Таким образом, я собрал корпус диалогов для 6 персонажей, включающий около 8 тысяч предложений для каждого персонажа. Подробное распределение по количеству предложений для каждого персонажа вы можете увидеть в таблице ниже: "Number of replicas for every character"

Анализ данных

Количество реплик для всех сезонов показано ниже: "Number of replicas for every character" Как видно, среднее значение количества реплик за все сезоны составляет 6000 при стандартном отклонении около 400.

Количество реплик для всех эпизодов показано ниже: "Number of replicas for all seasons" Как видно, среднее значение количества реплик в эпизоде составляет 265. Стандартное отклонение составляет около 65 реплик.

Самые частые слова в наборе данных: "Number of replicas for episode"

Анализ стилей персонажей

Прежде чем обучать языковые шаблоны, я исследовал стилевые особенности Рэйчел. В частности, чтобы определить особенности речи, я сделал следующее:

  • Подсчитал описательную статистику: количество слов, среднее количество слов в предложении, индекс читабельности, доля сложных слов и т. д.

  • Наиболее частотные слова для персонажей;

  • Доля положительных и отрицательных слов.

Исходя из приведенного сюжета, можно сделать предварительные выводы о специфике речи персонажей. Например, Росс и Рейчел самые разговорчивые, у них максимальное количество предложений.

После такого первичного анализа речи я более детально исследовала словарный запас и проанализировала его с точки зрения сложности слов, используемых персонажами. За "трудные" слова мы условно приняли длинные слова, состоящие более чем из 4 слогов. Долю сложных слов для каждого персонажа можно увидеть на графике ниже:

Самые частые слова Рейчел

Я провел анализ наиболее частотных слов Рейчел, исключив стоп-слова из nltk.stopwords("english"). Результат этого анализа показан ниже. "Most frequent Rachel's words" Или эти данные можно представить в виде изображения "Most frequent rachel's words in image"

Подготовка данных

Итак, мы собрали фразы Рейчел и разделили их на два набора данных: реплики и фразы. Для целей моделирования мы снабдили все реплики дополнительным набором лексем и тегов:

Специальные лексемы и , обозначающие начало и конец примера.

Имя персонажа пишется заглавными буквами.

Специальный псевдоним NOTFRIEND, который являлся маркером реплики другого говорящего в диалоговых парах "реплика НЕФРИЕНДА - ответ ГЕРОЯ". Мы использовали такой псевдоним, чтобы отделить чужие реплики от героя, чьему стилю мы хотим подражать.

Используя данные с дополнительными лексемами, я создал два набора данных для Рейчел на английском языке. Ниже приведено краткое описание каждого из них:

  1. Сырые монологи - набор данных, содержащий отдельные реплики одного из персонажей. Этот набор данных позволяет модели получить максимум информации о стиле конкретного персонажа.

"raw monologues"

  1. Необработанные диалоги - набор данных, содержащий пары "реплика НЕдруга - ответ ГЕРОя", разделенные символом переноса строки \n. Набор данных диалогов необходим, потому что мы хотим, чтобы наша модель могла поддерживать разговор с пользователем в стиле Friends, а не просто генерировать текст.

"raw dialogs"

Обучение

Для обучения модели передачи стиля Рейчел чатботу я использовал несколько моделей. Обучение моделей проходит в два этапа. На первом этапе модель пытается уловить личность Рейчел и изучает ее монологи. На втором этапе модель пытается узнать, как Рейчел ведет себя в диалогах, поэтому на этом этапе модель обучается на диалогах.

  1. Первый этап - GPT2. Для наборов данных я использовал TextDataset от PyTorch и библиотеку трансформаторов от huggingface. Результаты показаны на изображении ниже "gpt2-results"

  2. Вторая модель - GPT2-medium. Результаты обучения на монологах показаны ниже "gpt2-medium-mono-train" Обучение диалогам показано на следующем изображении "gpt2-medium-mono-train" Результат обучения показан ниже "gpt2-medium-results"

  3. Последняя модель - GPT2-large. Обучение на монологах показано ниже "gpt2-large-mono-train" Обучение диалогам показано на следующем изображении "gpt2-large-mono-train" Результат обучения показан ниже "gpt2-large-results"

Архитектура

  • PrepareData.ipynb <- Парсер данных из Интернета, очистка, токенизация и подготовка к набору данных
  • train_data <- папка datasets с монологами и диалогами
  • Training_gpt2_medium.ipynb <- обучение gpt2-medium
  • en_gpt2-medium_rachel_replics <- модель gpt2-medium
  • Training_gpt2_large.ipynb <- тренировка gpt2-large
  • en_gpt2-large_rachel_replics <- gpt2-large модель
  • images <- изображения для README.md
  • app.py <- основной файл
  • requirements.txt <- необходимые библиотеки

Заключение и планы на будущее

Итак, я использовал методы обработки естественного языка для изучения стиля речи Рейчел из известного сериала "Друзья", провел мультиязычный анализ для английского языка и обучил языковые модели на основе GPT говорить в стиле Рейчел. В будущем я хочу поэкспериментировать с еще более крупными моделями. Например, с LLama, а также с методами генерации управляемого текста для них.