Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.utils import render_utils | |
import trimesh | |
import tempfile | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def preprocess_mesh(mesh_prompt): | |
print("Processing mesh") | |
trimesh_mesh = trimesh.load_mesh(mesh_prompt) | |
trimesh_mesh.export(mesh_prompt+'.glb') | |
return mesh_prompt+'.glb' | |
def preprocess_image(image): | |
if image is None: | |
return None | |
image = pipeline.preprocess_image(image, resolution=1024) | |
return image | |
def generate_3d(image, seed=-1, | |
ss_guidance_strength=3, ss_sampling_steps=50, | |
slat_guidance_strength=3, slat_sampling_steps=6,): | |
if image is None: | |
return None, None, None | |
if seed == -1: | |
seed = np.random.randint(0, MAX_SEED) | |
image = pipeline.preprocess_image(image, resolution=1024) | |
normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object') | |
outputs = pipeline.run( | |
normal_image, | |
seed=seed, | |
formats=["mesh",], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
generated_mesh = outputs['mesh'][0] | |
# Save outputs | |
import datetime | |
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True) | |
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb" | |
render_results = render_utils.render_video(generated_mesh, resolution=1024, ssaa=1, num_frames=8, pitch=0.25, inverse_direction=True) | |
def combine_diagonal(color_np, normal_np): | |
# Convert images to numpy arrays | |
h, w, c = color_np.shape | |
# Create a boolean mask that is True for pixels where x > y (diagonally) | |
mask = np.fromfunction(lambda y, x: x > y, (h, w)) | |
mask = mask.astype(bool) | |
mask = np.stack([mask] * c, axis=-1) | |
# Where mask is True take color, else normal | |
combined_np = np.where(mask, color_np, normal_np) | |
return Image.fromarray(combined_np) | |
preview_images = [combine_diagonal(c, n) for c, n in zip(render_results['color'], render_results['normal'])] | |
# Export mesh | |
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True) | |
trimesh_mesh.export(mesh_path) | |
return preview_images, normal_image, mesh_path, mesh_path | |
def convert_mesh(mesh_path, export_format): | |
"""Download the mesh in the selected format.""" | |
if not mesh_path: | |
return None | |
# Create a temporary file to store the mesh data | |
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False) | |
temp_file_path = temp_file.name | |
new_mesh_path = mesh_path.replace(".glb", f".{export_format}") | |
mesh = trimesh.load_mesh(mesh_path) | |
mesh.export(temp_file_path) # Export to the temporary file | |
return temp_file_path # Return the path to the temporary file | |
# Create the Gradio interface with improved layout | |
with gr.Blocks(css="footer {visibility: hidden}") as demo: | |
gr.Markdown( | |
""" | |
<h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1> | |
<p style='text-align: center;'> | |
<strong>V0.1, Introduced By | |
<a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> from CUHKSZ and | |
<a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> from ByteDance</strong> | |
</p> | |
""" | |
) | |
with gr.Row(): | |
gr.Markdown(""" | |
<p align="center"> | |
<a title="Website" href="https://stable-x.github.io/Hi3DGen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg"> | |
</a> | |
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg"> | |
</a> | |
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> | |
</a> | |
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social"> | |
</a> | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Tabs(): | |
with gr.Tab("Single Image"): | |
with gr.Row(): | |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil") | |
normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil") | |
with gr.Tab("Multiple Images"): | |
gr.Markdown("<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1) | |
gr.Markdown("#### Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1) | |
gr.Markdown("#### Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1) | |
with gr.Group(): | |
with gr.Row(): | |
gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary") | |
# Right column - Output | |
with gr.Column(scale=1): | |
with gr.Tabs(): | |
with gr.Tab("Preview"): | |
output_gallery = gr.Gallery(label="Examples", columns=4, rows=2, object_fit="contain", height="auto",show_label=False) | |
with gr.Tab("3D Model"): | |
with gr.Column(): | |
model_output = gr.Model3D(label="3D Model Preview (Each model is approximately 40MB, may take around 1 minute to load)") | |
with gr.Column(): | |
export_format = gr.Dropdown( | |
choices=["obj", "glb", "ply", "stl"], | |
value="glb", | |
label="File Format" | |
) | |
download_btn = gr.DownloadButton(label="Export Mesh", interactive=False) | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[image_prompt] | |
) | |
gen_shape_btn.click( | |
generate_3d, | |
inputs=[ | |
image_prompt, seed, | |
ss_guidance_strength, ss_sampling_steps, | |
slat_guidance_strength, slat_sampling_steps | |
], | |
outputs=[output_gallery, normal_output, model_output, download_btn] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_btn], | |
) | |
def update_download_button(mesh_path, export_format): | |
if not mesh_path: | |
return gr.File.update(value=None, interactive=False) | |
download_path = convert_mesh(mesh_path, export_format) | |
return download_path | |
export_format.change( | |
update_download_button, | |
inputs=[model_output, export_format], | |
outputs=[download_btn] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_btn], | |
) | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=image_prompt, | |
) | |
gr.Markdown( | |
""" | |
**Acknowledgments**: Hi3DGen is built on the shoulders of giants. We would like to express our gratitude to the open-source research community and the developers of these pioneering projects: | |
- **3D Modeling:** Our 3D Model is finetuned from the SOTA open-source 3D foundation model [Trellis](https://github.com/microsoft/TRELLIS) and we draw inspiration from the teams behind [Rodin](https://hyperhuman.deemos.com/rodin), [Tripo](https://www.tripo3d.ai/app/home), and [Dora](https://github.com/Seed3D/Dora). | |
- **Normal Estimation:** Our Normal Estimation Model builds on the leading normal estimation research such as [StableNormal](https://github.com/hugoycj/StableNormal) and [GenPercept](https://github.com/aim-uofa/GenPercept). | |
**Your contributions and collaboration push the boundaries of 3D modeling!** | |
""" | |
) | |
if __name__ == "__main__": | |
# Initialize pipeline | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("Stable-X/trellis-normal-v0-1") | |
pipeline.cuda() | |
# Initialize normal predictor | |
normal_predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal_turbo", trust_repo=True, yoso_version='yoso-normal-v1-8-1') | |
# Launch the app | |
demo.launch() | |