StableRecon / dust3r /cloud_opt /init_im_poses.py
Stable-X's picture
Upload folder using huggingface_hub
e4bf056 verified
raw
history blame
12 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Initialization functions for global alignment
# --------------------------------------------------------
from functools import cache
import numpy as np
import scipy.sparse as sp
import torch
import cv2
import roma
from tqdm import tqdm
from dust3r.utils.geometry import geotrf, inv, get_med_dist_between_poses
from dust3r.post_process import estimate_focal_knowing_depth
from dust3r.viz import to_numpy
from dust3r.cloud_opt.commons import edge_str, i_j_ij, compute_edge_scores, compute_edge_scores2
@torch.no_grad()
def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3):
device = self.device
# indices of known poses
nkp, known_poses_msk, known_poses = get_known_poses(self)
assert nkp == self.n_imgs, 'not all poses are known'
# get all focals
nkf, _, im_focals = get_known_focals(self)
assert nkf == self.n_imgs
im_pp = self.get_principal_points()
best_depthmaps = {}
# init all pairwise poses
for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)):
i_j = edge_str(i, j)
# find relative pose for this pair
P1 = torch.eye(4, device=device)
msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1)
_, P2 = fast_pnp(self.pred_j[i_j], float(im_focals[i].mean()),
pp=im_pp[i], msk=msk, device=device, niter_PnP=niter_PnP)
# align the two predicted camera with the two gt cameras
s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]])
# normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1
# and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3])
self._set_pose(self.pw_poses, e, R, T, scale=s)
# remember if this is a good depthmap
score = float(self.conf_i[i_j].mean())
if score > best_depthmaps.get(i, (0,))[0]:
best_depthmaps[i] = score, i_j, s
# init all image poses
for n in range(self.n_imgs):
assert known_poses_msk[n]
_, i_j, scale = best_depthmaps[n]
depth = self.pred_i[i_j][:, :, 2]
self._set_depthmap(n, depth * scale)
@torch.no_grad()
def init_minimum_spanning_tree(self, return_tree=False, **kw):
""" Init all camera poses (image-wise and pairwise poses) given
an initial set of pairwise estimations.
"""
if return_tree:
return minimum_spanning_tree(self.imshapes, self.edges, self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr,
self.device, has_im_poses=self.has_im_poses, verbose=self.verbose, return_tree=True)
device = self.device
pts3d, _, im_focals, im_poses = minimum_spanning_tree(self.imshapes, self.edges,
self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr,
device, has_im_poses=self.has_im_poses, verbose=self.verbose,
**kw)
return init_from_pts3d(self, pts3d, im_focals, im_poses)
def compute_distance_matrix(imshapes, edges, conf_i, conf_j):
n_imgs = len(imshapes)
sparse_graph = -dict_to_sparse_graph(compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j))
dist_matrix = np.full((n_imgs, n_imgs), np.inf)
for (i, j), score in sparse_graph.items():
dist_matrix[i, j] = score
return dist_matrix
def init_from_pts3d(self, pts3d, im_focals, im_poses):
# init poses
nkp, known_poses_msk, known_poses = get_known_poses(self)
if nkp == 1:
raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose")
elif nkp > 1:
# global rigid SE3 alignment
s, R, T = align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk])
trf = sRT_to_4x4(s, R, T, device=known_poses.device)
# rotate everything
im_poses = trf @ im_poses
im_poses[:, :3, :3] /= s # undo scaling on the rotation part
for img_pts3d in pts3d:
img_pts3d[:] = geotrf(trf, img_pts3d)
# set all pairwise poses
for e, (i, j) in enumerate(self.edges):
i_j = edge_str(i, j)
# compute transform that goes from cam to world
s, R, T = rigid_points_registration(self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j])
self._set_pose(self.pw_poses, e, R, T, scale=s)
# take into account the scale normalization
s_factor = self.get_pw_norm_scale_factor()
im_poses[:, :3, 3] *= s_factor # apply downscaling factor
for img_pts3d in pts3d:
img_pts3d *= s_factor
# init all image poses
if self.has_im_poses:
for i in range(self.n_imgs):
cam2world = im_poses[i]
depth = geotrf(inv(cam2world), pts3d[i])[..., 2]
self._set_depthmap(i, depth)
self._set_pose(self.im_poses, i, cam2world)
if im_focals[i] is not None:
self._set_focal(i, im_focals[i])
if self.verbose:
print(' init loss =', float(self()))
def minimum_spanning_tree(imshapes, edges, pred_i, pred_j, conf_i, conf_j, im_conf, min_conf_thr,
device, has_im_poses=True, niter_PnP=10, verbose=True, return_tree=False):
n_imgs = len(imshapes)
sparse_graph = -dict_to_sparse_graph(compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j))
msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo()
if return_tree:
return msp
# temp variable to store 3d points
pts3d = [None] * len(imshapes)
todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges
im_poses = [None] * n_imgs
im_focals = [None] * n_imgs
# init with strongest edge
score, i, j = todo.pop()
if verbose:
print(f' init edge ({i}*,{j}*) {score=}')
i_j = edge_str(i, j)
pts3d[i] = pred_i[i_j].clone()
pts3d[j] = pred_j[i_j].clone()
done = {i, j}
if has_im_poses:
im_poses[i] = torch.eye(4, device=device)
im_focals[i] = estimate_focal(pred_i[i_j])
# set initial pointcloud based on pairwise graph
msp_edges = [(i, j)]
while todo:
# each time, predict the next one
score, i, j = todo.pop()
if im_focals[i] is None:
im_focals[i] = estimate_focal(pred_i[i_j])
if i in done:
if verbose:
print(f' init edge ({i},{j}*) {score=}')
assert j not in done
# align pred[i] with pts3d[i], and then set j accordingly
i_j = edge_str(i, j)
s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j])
trf = sRT_to_4x4(s, R, T, device)
pts3d[j] = geotrf(trf, pred_j[i_j])
done.add(j)
msp_edges.append((i, j))
if has_im_poses and im_poses[i] is None:
im_poses[i] = sRT_to_4x4(1, R, T, device)
elif j in done:
if verbose:
print(f' init edge ({i}*,{j}) {score=}')
assert i not in done
i_j = edge_str(i, j)
s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j])
trf = sRT_to_4x4(s, R, T, device)
pts3d[i] = geotrf(trf, pred_i[i_j])
done.add(i)
msp_edges.append((i, j))
if has_im_poses and im_poses[i] is None:
im_poses[i] = sRT_to_4x4(1, R, T, device)
else:
# let's try again later
todo.insert(0, (score, i, j))
if has_im_poses:
# complete all missing informations
pair_scores = list(sparse_graph.values()) # already negative scores: less is best
edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[np.argsort(pair_scores)]
for i, j in edges_from_best_to_worse.tolist():
if im_focals[i] is None:
im_focals[i] = estimate_focal(pred_i[edge_str(i, j)])
for i in range(n_imgs):
if im_poses[i] is None:
msk = im_conf[i] > min_conf_thr
res = fast_pnp(pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP)
if res:
im_focals[i], im_poses[i] = res
if im_poses[i] is None:
im_poses[i] = torch.eye(4, device=device)
im_poses = torch.stack(im_poses)
else:
im_poses = im_focals = None
return pts3d, msp_edges, im_focals, im_poses
def dict_to_sparse_graph(dic):
n_imgs = max(max(e) for e in dic) + 1
res = sp.dok_array((n_imgs, n_imgs))
for edge, value in dic.items():
res[edge] = value
return res
def rigid_points_registration(pts1, pts2, conf):
R, T, s = roma.rigid_points_registration(
pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf.ravel(), compute_scaling=True)
return s, R, T # return un-scaled (R, T)
def sRT_to_4x4(scale, R, T, device):
trf = torch.eye(4, device=device)
trf[:3, :3] = R * scale
trf[:3, 3] = T.ravel() # doesn't need scaling
return trf
def estimate_focal(pts3d_i, pp=None):
if pp is None:
H, W, THREE = pts3d_i.shape
assert THREE == 3
pp = torch.tensor((W/2, H/2), device=pts3d_i.device)
focal = estimate_focal_knowing_depth(pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode='weiszfeld').ravel()
return float(focal)
@cache
def pixel_grid(H, W):
return np.mgrid[:W, :H].T.astype(np.float32)
def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10):
# extract camera poses and focals with RANSAC-PnP
if msk.sum() < 4:
return None # we need at least 4 points for PnP
pts3d, msk = map(to_numpy, (pts3d, msk))
H, W, THREE = pts3d.shape
assert THREE == 3
pixels = pixel_grid(H, W)
if focal is None:
S = max(W, H)
tentative_focals = np.geomspace(S/2, S*3, 21)
else:
tentative_focals = [focal]
if pp is None:
pp = (W/2, H/2)
else:
pp = to_numpy(pp)
best = 0,
for focal in tentative_focals:
K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])
success, R, T, inliers = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None,
iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP)
if not success:
continue
score = len(inliers)
if success and score > best[0]:
best = score, R, T, focal
if not best[0]:
return None
_, R, T, best_focal = best
R = cv2.Rodrigues(R)[0] # world to cam
R, T = map(torch.from_numpy, (R, T))
return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world
def get_known_poses(self):
if self.has_im_poses:
known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses])
known_poses = self.get_im_poses()
return known_poses_msk.sum(), known_poses_msk, known_poses
else:
return 0, None, None
def get_known_focals(self):
if self.has_im_poses:
known_focal_msk = self.get_known_focal_mask()
known_focals = self.get_focals()
return known_focal_msk.sum(), known_focal_msk, known_focals
else:
return 0, None, None
def align_multiple_poses(src_poses, target_poses):
N = len(src_poses)
assert src_poses.shape == target_poses.shape == (N, 4, 4)
def center_and_z(poses):
eps = get_med_dist_between_poses(poses) / 100
return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps*poses[:, :3, 2]))
R, T, s = roma.rigid_points_registration(center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True)
return s, R, T