hugoycj
feat: Add mast3r dependencies
2caa1bd
raw
history blame
42.2 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R Sparse Global Alignement
# --------------------------------------------------------
from tqdm import tqdm
import roma
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
from collections import namedtuple
from functools import lru_cache
from scipy import sparse as sp
import copy
from mast3r.utils.misc import mkdir_for, hash_md5
from mast3r.cloud_opt.utils.losses import gamma_loss
from mast3r.cloud_opt.utils.schedules import linear_schedule, cosine_schedule
from mast3r.fast_nn import fast_reciprocal_NNs, merge_corres
import mast3r.utils.path_to_dust3r # noqa
from dust3r.utils.geometry import inv, geotrf # noqa
from dust3r.utils.device import to_cpu, to_numpy, todevice # noqa
from dust3r.post_process import estimate_focal_knowing_depth # noqa
from dust3r.optim_factory import adjust_learning_rate_by_lr # noqa
from dust3r.viz import SceneViz
class SparseGA():
def __init__(self, img_paths, pairs_in, res_fine, anchors, canonical_paths=None):
def fetch_img(im):
def torgb(x): return (x[0].permute(1, 2, 0).numpy() * .5 + .5).clip(min=0., max=1.)
for im1, im2 in pairs_in:
if im1['instance'] == im:
return torgb(im1['img'])
if im2['instance'] == im:
return torgb(im2['img'])
self.canonical_paths = canonical_paths
self.img_paths = img_paths
self.imgs = [fetch_img(img) for img in img_paths]
self.intrinsics = res_fine['intrinsics']
self.cam2w = res_fine['cam2w']
self.depthmaps = res_fine['depthmaps']
self.pts3d = res_fine['pts3d']
self.pts3d_colors = []
self.working_device = self.cam2w.device
for i in range(len(self.imgs)):
im = self.imgs[i]
x, y = anchors[i][0][..., :2].detach().cpu().numpy().T
self.pts3d_colors.append(im[y, x])
assert self.pts3d_colors[-1].shape == self.pts3d[i].shape
self.n_imgs = len(self.imgs)
def get_focals(self):
return torch.tensor([ff[0, 0] for ff in self.intrinsics]).to(self.working_device)
def get_principal_points(self):
return torch.stack([ff[:2, -1] for ff in self.intrinsics]).to(self.working_device)
def get_im_poses(self):
return self.cam2w
def get_sparse_pts3d(self):
return self.pts3d
def get_dense_pts3d(self, clean_depth=True, subsample=8):
assert self.canonical_paths, 'cache_path is required for dense 3d points'
device = self.cam2w.device
confs = []
base_focals = []
anchors = {}
for i, canon_path in enumerate(self.canonical_paths):
(canon, canon2, conf), focal = torch.load(canon_path, map_location=device)
confs.append(conf)
base_focals.append(focal)
H, W = conf.shape
pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device)
idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample)
anchors[i] = (pixels, idxs[i], offsets[i])
# densify sparse depthmaps
pts3d, depthmaps = make_pts3d(anchors, self.intrinsics, self.cam2w, [
d.ravel() for d in self.depthmaps], base_focals=base_focals, ret_depth=True)
return pts3d, depthmaps, confs
def get_pts3d_colors(self):
return self.pts3d_colors
def get_depthmaps(self):
return self.depthmaps
def get_masks(self):
return [slice(None, None) for _ in range(len(self.imgs))]
def show(self, show_cams=True):
pts3d, _, confs = self.get_dense_pts3d()
show_reconstruction(self.imgs, self.intrinsics if show_cams else None, self.cam2w,
[p.clip(min=-50, max=50) for p in pts3d],
masks=[c > 1 for c in confs])
def convert_dust3r_pairs_naming(imgs, pairs_in):
for pair_id in range(len(pairs_in)):
for i in range(2):
pairs_in[pair_id][i]['instance'] = imgs[pairs_in[pair_id][i]['idx']]
return pairs_in
def sparse_global_alignment(imgs, pairs_in, cache_path, model, subsample=8, desc_conf='desc_conf',
device='cuda', dtype=torch.float32, shared_intrinsics=False, **kw):
""" Sparse alignment with MASt3R
imgs: list of image paths
cache_path: path where to dump temporary files (str)
lr1, niter1: learning rate and #iterations for coarse global alignment (3D matching)
lr2, niter2: learning rate and #iterations for refinement (2D reproj error)
lora_depth: smart dimensionality reduction with depthmaps
"""
# Convert pair naming convention from dust3r to mast3r
pairs_in = convert_dust3r_pairs_naming(imgs, pairs_in)
# forward pass
pairs, cache_path = forward_mast3r(pairs_in, model,
cache_path=cache_path, subsample=subsample,
desc_conf=desc_conf, device=device)
# extract canonical pointmaps
tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21 = \
prepare_canonical_data(imgs, pairs, subsample, cache_path=cache_path, mode='avg-angle', device=device)
# compute minimal spanning tree
mst = compute_min_spanning_tree(pairwise_scores)
# remove all edges not in the spanning tree?
# min_spanning_tree = {(imgs[i],imgs[j]) for i,j in mst[1]}
# tmp_pairs = {(a,b):v for (a,b),v in tmp_pairs.items() if {(a,b),(b,a)} & min_spanning_tree}
# smartly combine all useful data
imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21 = \
condense_data(imgs, tmp_pairs, canonical_views, preds_21, dtype)
imgs, res_coarse, res_fine = sparse_scene_optimizer(
imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21, canonical_paths, mst,
shared_intrinsics=shared_intrinsics, cache_path=cache_path, device=device, dtype=dtype, **kw)
return SparseGA(imgs, pairs_in, res_fine or res_coarse, anchors, canonical_paths)
def sparse_scene_optimizer(imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d,
preds_21, canonical_paths, mst, cache_path,
lr1=0.2, niter1=500, loss1=gamma_loss(1.1),
lr2=0.02, niter2=500, loss2=gamma_loss(0.4),
lossd=gamma_loss(1.1),
opt_pp=True, opt_depth=True,
schedule=cosine_schedule, depth_mode='add', exp_depth=False,
lora_depth=False, # dict(k=96, gamma=15, min_norm=.5),
shared_intrinsics=False,
init={}, device='cuda', dtype=torch.float32,
matching_conf_thr=5., loss_dust3r_w=0.01,
verbose=True, dbg=()):
init = copy.deepcopy(init)
# extrinsic parameters
vec0001 = torch.tensor((0, 0, 0, 1), dtype=dtype, device=device)
quats = [nn.Parameter(vec0001.clone()) for _ in range(len(imgs))]
trans = [nn.Parameter(torch.zeros(3, device=device, dtype=dtype)) for _ in range(len(imgs))]
# initialize
ones = torch.ones((len(imgs), 1), device=device, dtype=dtype)
median_depths = torch.ones(len(imgs), device=device, dtype=dtype)
for img in imgs:
idx = imgs.index(img)
init_values = init.setdefault(img, {})
if verbose and init_values:
print(f' >> initializing img=...{img[-25:]} [{idx}] for {set(init_values)}')
K = init_values.get('intrinsics')
if K is not None:
K = K.detach()
focal = K[:2, :2].diag().mean()
pp = K[:2, 2]
base_focals[idx] = focal
pps[idx] = pp
pps[idx] /= imsizes[idx] # default principal_point would be (0.5, 0.5)
depth = init_values.get('depthmap')
if depth is not None:
core_depth[idx] = depth.detach()
median_depths[idx] = med_depth = core_depth[idx].median()
core_depth[idx] /= med_depth
cam2w = init_values.get('cam2w')
if cam2w is not None:
rot = cam2w[:3, :3].detach()
cam_center = cam2w[:3, 3].detach()
quats[idx].data[:] = roma.rotmat_to_unitquat(rot)
trans_offset = med_depth * torch.cat((imsizes[idx] / base_focals[idx] * (0.5 - pps[idx]), ones[:1, 0]))
trans[idx].data[:] = cam_center + rot @ trans_offset
del rot
assert False, 'inverse kinematic chain not yet implemented'
# intrinsics parameters
if shared_intrinsics:
# Optimize a single set of intrinsics for all cameras. Use averages as init.
confs = torch.stack([torch.load(pth)[0][2].mean() for pth in canonical_paths]).to(pps)
weighting = confs / confs.sum()
pp = nn.Parameter((weighting @ pps).to(dtype))
pps = [pp for _ in range(len(imgs))]
focal_m = weighting @ base_focals
log_focal = nn.Parameter(focal_m.view(1).log().to(dtype))
log_focals = [log_focal for _ in range(len(imgs))]
else:
pps = [nn.Parameter(pp.to(dtype)) for pp in pps]
log_focals = [nn.Parameter(f.view(1).log().to(dtype)) for f in base_focals]
diags = imsizes.float().norm(dim=1)
min_focals = 0.25 * diags # diag = 1.2~1.4*max(W,H) => beta >= 1/(2*1.2*tan(fov/2)) ~= 0.26
max_focals = 10 * diags
assert len(mst[1]) == len(pps) - 1
def make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth):
# make intrinsics
focals = torch.cat(log_focals).exp().clip(min=min_focals, max=max_focals)
pps = torch.stack(pps)
K = torch.eye(3, dtype=dtype, device=device)[None].expand(len(imgs), 3, 3).clone()
K[:, 0, 0] = K[:, 1, 1] = focals
K[:, 0:2, 2] = pps * imsizes
if trans is None:
return K
# security! optimization is always trying to crush the scale down
sizes = torch.cat(log_sizes).exp()
global_scaling = 1 / sizes.min()
# compute distance of camera to focal plane
# tan(fov) = W/2 / focal
z_cameras = sizes * median_depths * focals / base_focals
# make extrinsic
rel_cam2cam = torch.eye(4, dtype=dtype, device=device)[None].expand(len(imgs), 4, 4).clone()
rel_cam2cam[:, :3, :3] = roma.unitquat_to_rotmat(F.normalize(torch.stack(quats), dim=1))
rel_cam2cam[:, :3, 3] = torch.stack(trans)
# camera are defined as a kinematic chain
tmp_cam2w = [None] * len(K)
tmp_cam2w[mst[0]] = rel_cam2cam[mst[0]]
for i, j in mst[1]:
# i is the cam_i_to_world reference, j is the relative pose = cam_j_to_cam_i
tmp_cam2w[j] = tmp_cam2w[i] @ rel_cam2cam[j]
tmp_cam2w = torch.stack(tmp_cam2w)
# smart reparameterizaton of cameras
trans_offset = z_cameras.unsqueeze(1) * torch.cat((imsizes / focals.unsqueeze(1) * (0.5 - pps), ones), dim=-1)
new_trans = global_scaling * (tmp_cam2w[:, :3, 3:4] - tmp_cam2w[:, :3, :3] @ trans_offset.unsqueeze(-1))
cam2w = torch.cat((torch.cat((tmp_cam2w[:, :3, :3], new_trans), dim=2),
vec0001.view(1, 1, 4).expand(len(K), 1, 4)), dim=1)
depthmaps = []
for i in range(len(imgs)):
core_depth_img = core_depth[i]
if exp_depth:
core_depth_img = core_depth_img.exp()
if lora_depth: # compute core_depth as a low-rank decomposition of 3d points
core_depth_img = lora_depth_proj[i] @ core_depth_img
if depth_mode == 'add':
core_depth_img = z_cameras[i] + (core_depth_img - 1) * (median_depths[i] * sizes[i])
elif depth_mode == 'mul':
core_depth_img = z_cameras[i] * core_depth_img
else:
raise ValueError(f'Bad {depth_mode=}')
depthmaps.append(global_scaling * core_depth_img)
return K, (inv(cam2w), cam2w), depthmaps
K = make_K_cam_depth(log_focals, pps, None, None, None, None)
if shared_intrinsics:
print('init focal (shared) = ', to_numpy(K[0, 0, 0]).round(2))
else:
print('init focals =', to_numpy(K[:, 0, 0]))
# spectral low-rank projection of depthmaps
if lora_depth:
core_depth, lora_depth_proj = spectral_projection_of_depthmaps(
imgs, K, core_depth, subsample, cache_path=cache_path, **lora_depth)
if exp_depth:
core_depth = [d.clip(min=1e-4).log() for d in core_depth]
core_depth = [nn.Parameter(d.ravel().to(dtype)) for d in core_depth]
log_sizes = [nn.Parameter(torch.zeros(1, dtype=dtype, device=device)) for _ in range(len(imgs))]
# Fetch img slices
_, confs_sum, imgs_slices = corres
# Define which pairs are fine to use with matching
def matching_check(x): return x.max() > matching_conf_thr
is_matching_ok = {}
for s in imgs_slices:
is_matching_ok[s.img1, s.img2] = matching_check(s.confs)
# Prepare slices and corres for losses
dust3r_slices = [s for s in imgs_slices if not is_matching_ok[s.img1, s.img2]]
loss3d_slices = [s for s in imgs_slices if is_matching_ok[s.img1, s.img2]]
cleaned_corres2d = []
for cci, (img1, pix1, confs, confsum, imgs_slices) in enumerate(corres2d):
cf_sum = 0
pix1_filtered = []
confs_filtered = []
curstep = 0
cleaned_slices = []
for img2, slice2 in imgs_slices:
if is_matching_ok[img1, img2]:
tslice = slice(curstep, curstep + slice2.stop - slice2.start, slice2.step)
pix1_filtered.append(pix1[tslice])
confs_filtered.append(confs[tslice])
cleaned_slices.append((img2, slice2))
curstep += slice2.stop - slice2.start
if pix1_filtered != []:
pix1_filtered = torch.cat(pix1_filtered)
confs_filtered = torch.cat(confs_filtered)
cf_sum = confs_filtered.sum()
cleaned_corres2d.append((img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices))
def loss_dust3r(cam2w, pts3d, pix_loss):
# In the case no correspondence could be established, fallback to DUSt3R GA regression loss formulation (sparsified)
loss = 0.
cf_sum = 0.
for s in dust3r_slices:
if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'):
continue
# fallback to dust3r regression
tgt_pts, tgt_confs = preds_21[imgs[s.img2]][imgs[s.img1]]
tgt_pts = geotrf(cam2w[s.img2], tgt_pts)
cf_sum += tgt_confs.sum()
loss += tgt_confs @ pix_loss(pts3d[s.img1], tgt_pts)
return loss / cf_sum if cf_sum != 0. else 0.
def loss_3d(K, w2cam, pts3d, pix_loss):
# For each correspondence, we have two 3D points (one for each image of the pair).
# For each 3D point, we have 2 reproj errors
if any(v.get('freeze') for v in init.values()):
pts3d_1 = []
pts3d_2 = []
confs = []
for s in loss3d_slices:
if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'):
continue
pts3d_1.append(pts3d[s.img1][s.slice1])
pts3d_2.append(pts3d[s.img2][s.slice2])
confs.append(s.confs)
else:
pts3d_1 = [pts3d[s.img1][s.slice1] for s in loss3d_slices]
pts3d_2 = [pts3d[s.img2][s.slice2] for s in loss3d_slices]
confs = [s.confs for s in loss3d_slices]
if pts3d_1 != []:
confs = torch.cat(confs)
pts3d_1 = torch.cat(pts3d_1)
pts3d_2 = torch.cat(pts3d_2)
loss = confs @ pix_loss(pts3d_1, pts3d_2)
cf_sum = confs.sum()
else:
loss = 0.
cf_sum = 1.
return loss / cf_sum
def loss_2d(K, w2cam, pts3d, pix_loss):
# For each correspondence, we have two 3D points (one for each image of the pair).
# For each 3D point, we have 2 reproj errors
proj_matrix = K @ w2cam[:, :3]
loss = npix = 0
for img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices in cleaned_corres2d:
if init[imgs[img1]].get('freeze', 0) >= 1:
continue # no need
pts3d_in_img1 = [pts3d[img2][slice2] for img2, slice2 in cleaned_slices]
if pts3d_in_img1 != []:
pts3d_in_img1 = torch.cat(pts3d_in_img1)
loss += confs_filtered @ pix_loss(pix1_filtered, reproj2d(proj_matrix[img1], pts3d_in_img1))
npix += confs_filtered.sum()
return loss / npix if npix != 0 else 0.
def optimize_loop(loss_func, lr_base, niter, pix_loss, lr_end=0):
# create optimizer
params = pps + log_focals + quats + trans + log_sizes + core_depth
optimizer = torch.optim.Adam(params, lr=1, weight_decay=0, betas=(0.9, 0.9))
ploss = pix_loss if 'meta' in repr(pix_loss) else (lambda a: pix_loss)
with tqdm(total=niter) as bar:
for iter in range(niter or 1):
K, (w2cam, cam2w), depthmaps = make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth)
pts3d = make_pts3d(anchors, K, cam2w, depthmaps, base_focals=base_focals)
if niter == 0:
break
alpha = (iter / niter)
lr = schedule(alpha, lr_base, lr_end)
adjust_learning_rate_by_lr(optimizer, lr)
pix_loss = ploss(1 - alpha)
optimizer.zero_grad()
loss = loss_func(K, w2cam, pts3d, pix_loss) + loss_dust3r_w * loss_dust3r(cam2w, pts3d, lossd)
loss.backward()
optimizer.step()
# make sure the pose remains well optimizable
for i in range(len(imgs)):
quats[i].data[:] /= quats[i].data.norm()
loss = float(loss)
if loss != loss:
break # NaN loss
bar.set_postfix_str(f'{lr=:.4f}, {loss=:.3f}')
bar.update(1)
if niter:
print(f'>> final loss = {loss}')
return dict(intrinsics=K.detach(), cam2w=cam2w.detach(),
depthmaps=[d.detach() for d in depthmaps], pts3d=[p.detach() for p in pts3d])
# at start, don't optimize 3d points
for i, img in enumerate(imgs):
trainable = not (init[img].get('freeze'))
pps[i].requires_grad_(False)
log_focals[i].requires_grad_(False)
quats[i].requires_grad_(trainable)
trans[i].requires_grad_(trainable)
log_sizes[i].requires_grad_(trainable)
core_depth[i].requires_grad_(False)
res_coarse = optimize_loop(loss_3d, lr_base=lr1, niter=niter1, pix_loss=loss1)
res_fine = None
if niter2:
# now we can optimize 3d points
for i, img in enumerate(imgs):
if init[img].get('freeze', 0) >= 1:
continue
pps[i].requires_grad_(bool(opt_pp))
log_focals[i].requires_grad_(True)
core_depth[i].requires_grad_(opt_depth)
# refinement with 2d reproj
res_fine = optimize_loop(loss_2d, lr_base=lr2, niter=niter2, pix_loss=loss2)
K = make_K_cam_depth(log_focals, pps, None, None, None, None)
if shared_intrinsics:
print('Final focal (shared) = ', to_numpy(K[0, 0, 0]).round(2))
else:
print('Final focals =', to_numpy(K[:, 0, 0]))
return imgs, res_coarse, res_fine
@lru_cache
def mask110(device, dtype):
return torch.tensor((1, 1, 0), device=device, dtype=dtype)
def proj3d(inv_K, pixels, z):
if pixels.shape[-1] == 2:
pixels = torch.cat((pixels, torch.ones_like(pixels[..., :1])), dim=-1)
return z.unsqueeze(-1) * (pixels * inv_K.diag() + inv_K[:, 2] * mask110(z.device, z.dtype))
def make_pts3d(anchors, K, cam2w, depthmaps, base_focals=None, ret_depth=False):
focals = K[:, 0, 0]
invK = inv(K)
all_pts3d = []
depth_out = []
for img, (pixels, idxs, offsets) in anchors.items():
# from depthmaps to 3d points
if base_focals is None:
pass
else:
# compensate for focal
# depth + depth * (offset - 1) * base_focal / focal
# = depth * (1 + (offset - 1) * (base_focal / focal))
offsets = 1 + (offsets - 1) * (base_focals[img] / focals[img])
pts3d = proj3d(invK[img], pixels, depthmaps[img][idxs] * offsets)
if ret_depth:
depth_out.append(pts3d[..., 2]) # before camera rotation
# rotate to world coordinate
pts3d = geotrf(cam2w[img], pts3d)
all_pts3d.append(pts3d)
if ret_depth:
return all_pts3d, depth_out
return all_pts3d
def make_dense_pts3d(intrinsics, cam2w, depthmaps, canonical_paths, subsample, device='cuda'):
base_focals = []
anchors = {}
confs = []
for i, canon_path in enumerate(canonical_paths):
(canon, canon2, conf), focal = torch.load(canon_path, map_location=device)
confs.append(conf)
base_focals.append(focal)
H, W = conf.shape
pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device)
idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample)
anchors[i] = (pixels, idxs[i], offsets[i])
# densify sparse depthmaps
pts3d, depthmaps_out = make_pts3d(anchors, intrinsics, cam2w, [
d.ravel() for d in depthmaps], base_focals=base_focals, ret_depth=True)
return pts3d, depthmaps_out, confs
@torch.no_grad()
def forward_mast3r(pairs, model, cache_path, desc_conf='desc_conf',
device='cuda', subsample=8, **matching_kw):
res_paths = {}
for img1, img2 in tqdm(pairs):
idx1 = hash_md5(img1['instance'])
idx2 = hash_md5(img2['instance'])
path1 = cache_path + f'/forward/{idx1}/{idx2}.pth'
path2 = cache_path + f'/forward/{idx2}/{idx1}.pth'
path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx1}-{idx2}.pth'
path_corres2 = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx2}-{idx1}.pth'
if os.path.isfile(path_corres2) and not os.path.isfile(path_corres):
score, (xy1, xy2, confs) = torch.load(path_corres2)
torch.save((score, (xy2, xy1, confs)), path_corres)
if not all(os.path.isfile(p) for p in (path1, path2, path_corres)):
if model is None:
continue
res = symmetric_inference(model, img1, img2, device=device)
X11, X21, X22, X12 = [r['pts3d'][0] for r in res]
C11, C21, C22, C12 = [r['conf'][0] for r in res]
descs = [r['desc'][0] for r in res]
qonfs = [r[desc_conf][0] for r in res]
# save
torch.save(to_cpu((X11, C11, X21, C21)), mkdir_for(path1))
torch.save(to_cpu((X22, C22, X12, C12)), mkdir_for(path2))
# perform reciprocal matching
corres = extract_correspondences(descs, qonfs, device=device, subsample=subsample)
conf_score = (C11.mean() * C12.mean() * C21.mean() * C22.mean()).sqrt().sqrt()
matching_score = (float(conf_score), float(corres[2].sum()), len(corres[2]))
if cache_path is not None:
torch.save((matching_score, corres), mkdir_for(path_corres))
res_paths[img1['instance'], img2['instance']] = (path1, path2), path_corres
del model
torch.cuda.empty_cache()
return res_paths, cache_path
def symmetric_inference(model, img1, img2, device):
shape1 = torch.from_numpy(img1['true_shape']).to(device, non_blocking=True)
shape2 = torch.from_numpy(img2['true_shape']).to(device, non_blocking=True)
img1 = img1['img'].to(device, non_blocking=True)
img2 = img2['img'].to(device, non_blocking=True)
# compute encoder only once
feat1, feat2, pos1, pos2 = model._encode_image_pairs(img1, img2, shape1, shape2)
def decoder(feat1, feat2, pos1, pos2, shape1, shape2):
dec1, dec2 = model._decoder(feat1, pos1, feat2, pos2)
with torch.cuda.amp.autocast(enabled=False):
res1 = model._downstream_head(1, [tok.float() for tok in dec1], shape1)
res2 = model._downstream_head(2, [tok.float() for tok in dec2], shape2)
return res1, res2
# decoder 1-2
res11, res21 = decoder(feat1, feat2, pos1, pos2, shape1, shape2)
# decoder 2-1
res22, res12 = decoder(feat2, feat1, pos2, pos1, shape2, shape1)
return (res11, res21, res22, res12)
def extract_correspondences(feats, qonfs, subsample=8, device=None, ptmap_key='pred_desc'):
feat11, feat21, feat22, feat12 = feats
qonf11, qonf21, qonf22, qonf12 = qonfs
assert feat11.shape[:2] == feat12.shape[:2] == qonf11.shape == qonf12.shape
assert feat21.shape[:2] == feat22.shape[:2] == qonf21.shape == qonf22.shape
if '3d' in ptmap_key:
opt = dict(device='cpu', workers=32)
else:
opt = dict(device=device, dist='dot', block_size=2**13)
# matching the two pairs
idx1 = []
idx2 = []
qonf1 = []
qonf2 = []
# TODO add non symmetric / pixel_tol options
for A, B, QA, QB in [(feat11, feat21, qonf11.cpu(), qonf21.cpu()),
(feat12, feat22, qonf12.cpu(), qonf22.cpu())]:
nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt)
nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt)
idx1.append(np.r_[nn1to2[0], nn2to1[1]])
idx2.append(np.r_[nn1to2[1], nn2to1[0]])
qonf1.append(QA.ravel()[idx1[-1]])
qonf2.append(QB.ravel()[idx2[-1]])
# merge corres from opposite pairs
H1, W1 = feat11.shape[:2]
H2, W2 = feat22.shape[:2]
cat = np.concatenate
xy1, xy2, idx = merge_corres(cat(idx1), cat(idx2), (H1, W1), (H2, W2), ret_xy=True, ret_index=True)
corres = (xy1.copy(), xy2.copy(), np.sqrt(cat(qonf1)[idx] * cat(qonf2)[idx]))
return todevice(corres, device)
@torch.no_grad()
def prepare_canonical_data(imgs, tmp_pairs, subsample, order_imgs=False, min_conf_thr=0,
cache_path=None, device='cuda', **kw):
canonical_views = {}
pairwise_scores = torch.zeros((len(imgs), len(imgs)), device=device)
canonical_paths = []
preds_21 = {}
for img in tqdm(imgs):
if cache_path:
cache = os.path.join(cache_path, 'canon_views', hash_md5(img) + f'_{subsample=}_{kw=}.pth')
canonical_paths.append(cache)
try:
(canon, canon2, cconf), focal = torch.load(cache, map_location=device)
except IOError:
# cache does not exist yet, we create it!
canon = focal = None
# collect all pred1
n_pairs = sum((img in pair) for pair in tmp_pairs)
ptmaps11 = None
pixels = {}
n = 0
for (img1, img2), ((path1, path2), path_corres) in tmp_pairs.items():
score = None
if img == img1:
X, C, X2, C2 = torch.load(path1, map_location=device)
score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr)
pixels[img2] = xy1, confs
if img not in preds_21:
preds_21[img] = {}
# Subsample preds_21
preds_21[img][img2] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel()
if img == img2:
X, C, X2, C2 = torch.load(path2, map_location=device)
score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr)
pixels[img1] = xy2, confs
if img not in preds_21:
preds_21[img] = {}
preds_21[img][img1] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel()
if score is not None:
i, j = imgs.index(img1), imgs.index(img2)
# score = score[0]
# score = np.log1p(score[2])
score = score[2]
pairwise_scores[i, j] = score
pairwise_scores[j, i] = score
if canon is not None:
continue
if ptmaps11 is None:
H, W = C.shape
ptmaps11 = torch.empty((n_pairs, H, W, 3), device=device)
confs11 = torch.empty((n_pairs, H, W), device=device)
ptmaps11[n] = X
confs11[n] = C
n += 1
if canon is None:
canon, canon2, cconf = canonical_view(ptmaps11, confs11, subsample, **kw)
del ptmaps11
del confs11
# compute focals
H, W = canon.shape[:2]
pp = torch.tensor([W / 2, H / 2], device=device)
if focal is None:
focal = estimate_focal_knowing_depth(canon[None], pp, focal_mode='weiszfeld', min_focal=0.5, max_focal=3.5)
if cache:
torch.save(to_cpu(((canon, canon2, cconf), focal)), mkdir_for(cache))
# extract depth offsets with correspondences
core_depth = canon[subsample // 2::subsample, subsample // 2::subsample, 2]
idxs, offsets = anchor_depth_offsets(canon2, pixels, subsample=subsample)
canonical_views[img] = (pp, (H, W), focal.view(1), core_depth, pixels, idxs, offsets)
return tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21
def load_corres(path_corres, device, min_conf_thr):
score, (xy1, xy2, confs) = torch.load(path_corres, map_location=device)
valid = confs > min_conf_thr if min_conf_thr else slice(None)
# valid = (xy1 > 0).all(dim=1) & (xy2 > 0).all(dim=1) & (xy1 < 512).all(dim=1) & (xy2 < 512).all(dim=1)
# print(f'keeping {valid.sum()} / {len(valid)} correspondences')
return score, (xy1[valid], xy2[valid], confs[valid])
PairOfSlices = namedtuple(
'ImgPair', 'img1, slice1, pix1, anchor_idxs1, img2, slice2, pix2, anchor_idxs2, confs, confs_sum')
def condense_data(imgs, tmp_paths, canonical_views, preds_21, dtype=torch.float32):
# aggregate all data properly
set_imgs = set(imgs)
principal_points = []
shapes = []
focals = []
core_depth = []
img_anchors = {}
tmp_pixels = {}
for idx1, img1 in enumerate(imgs):
# load stuff
pp, shape, focal, anchors, pixels_confs, idxs, offsets = canonical_views[img1]
principal_points.append(pp)
shapes.append(shape)
focals.append(focal)
core_depth.append(anchors)
img_uv1 = []
img_idxs = []
img_offs = []
cur_n = [0]
for img2, (pixels, match_confs) in pixels_confs.items():
if img2 not in set_imgs:
continue
assert len(pixels) == len(idxs[img2]) == len(offsets[img2])
img_uv1.append(torch.cat((pixels, torch.ones_like(pixels[:, :1])), dim=-1))
img_idxs.append(idxs[img2])
img_offs.append(offsets[img2])
cur_n.append(cur_n[-1] + len(pixels))
# store the position of 3d points
tmp_pixels[img1, img2] = pixels.to(dtype), match_confs.to(dtype), slice(*cur_n[-2:])
img_anchors[idx1] = (torch.cat(img_uv1), torch.cat(img_idxs), torch.cat(img_offs))
all_confs = []
imgs_slices = []
corres2d = {img: [] for img in range(len(imgs))}
for img1, img2 in tmp_paths:
try:
pix1, confs1, slice1 = tmp_pixels[img1, img2]
pix2, confs2, slice2 = tmp_pixels[img2, img1]
except KeyError:
continue
img1 = imgs.index(img1)
img2 = imgs.index(img2)
confs = (confs1 * confs2).sqrt()
# prepare for loss_3d
all_confs.append(confs)
anchor_idxs1 = canonical_views[imgs[img1]][5][imgs[img2]]
anchor_idxs2 = canonical_views[imgs[img2]][5][imgs[img1]]
imgs_slices.append(PairOfSlices(img1, slice1, pix1, anchor_idxs1,
img2, slice2, pix2, anchor_idxs2,
confs, float(confs.sum())))
# prepare for loss_2d
corres2d[img1].append((pix1, confs, img2, slice2))
corres2d[img2].append((pix2, confs, img1, slice1))
all_confs = torch.cat(all_confs)
corres = (all_confs, float(all_confs.sum()), imgs_slices)
def aggreg_matches(img1, list_matches):
pix1, confs, img2, slice2 = zip(*list_matches)
all_pix1 = torch.cat(pix1).to(dtype)
all_confs = torch.cat(confs).to(dtype)
return img1, all_pix1, all_confs, float(all_confs.sum()), [(j, sl2) for j, sl2 in zip(img2, slice2)]
corres2d = [aggreg_matches(img, m) for img, m in corres2d.items()]
imsizes = torch.tensor([(W, H) for H, W in shapes], device=pp.device) # (W,H)
principal_points = torch.stack(principal_points)
focals = torch.cat(focals)
# Subsample preds_21
subsamp_preds_21 = {}
for imk, imv in preds_21.items():
subsamp_preds_21[imk] = {}
for im2k, (pred, conf) in preds_21[imk].items():
idxs = img_anchors[imgs.index(im2k)][1]
subsamp_preds_21[imk][im2k] = (pred[idxs], conf[idxs]) # anchors subsample
return imsizes, principal_points, focals, core_depth, img_anchors, corres, corres2d, subsamp_preds_21
def canonical_view(ptmaps11, confs11, subsample, mode='avg-angle'):
assert len(ptmaps11) == len(confs11) > 0, 'not a single view1 for img={i}'
# canonical pointmap is just a weighted average
confs11 = confs11.unsqueeze(-1) - 0.999
canon = (confs11 * ptmaps11).sum(0) / confs11.sum(0)
canon_depth = ptmaps11[..., 2].unsqueeze(1)
S = slice(subsample // 2, None, subsample)
center_depth = canon_depth[:, :, S, S]
center_depth = torch.clip(center_depth, min=torch.finfo(center_depth.dtype).eps)
stacked_depth = F.pixel_unshuffle(canon_depth, subsample)
stacked_confs = F.pixel_unshuffle(confs11[:, None, :, :, 0], subsample)
if mode == 'avg-reldepth':
rel_depth = stacked_depth / center_depth
stacked_canon = (stacked_confs * rel_depth).sum(dim=0) / stacked_confs.sum(dim=0)
canon2 = F.pixel_shuffle(stacked_canon.unsqueeze(0), subsample).squeeze()
elif mode == 'avg-angle':
xy = ptmaps11[..., 0:2].permute(0, 3, 1, 2)
stacked_xy = F.pixel_unshuffle(xy, subsample)
B, _, H, W = stacked_xy.shape
stacked_radius = (stacked_xy.view(B, 2, -1, H, W) - xy[:, :, None, S, S]).norm(dim=1)
stacked_radius.clip_(min=1e-8)
stacked_angle = torch.arctan((stacked_depth - center_depth) / stacked_radius)
avg_angle = (stacked_confs * stacked_angle).sum(dim=0) / stacked_confs.sum(dim=0)
# back to depth
stacked_depth = stacked_radius.mean(dim=0) * torch.tan(avg_angle)
canon2 = F.pixel_shuffle((1 + stacked_depth / canon[S, S, 2]).unsqueeze(0), subsample).squeeze()
else:
raise ValueError(f'bad {mode=}')
confs = (confs11.square().sum(dim=0) / confs11.sum(dim=0)).squeeze()
return canon, canon2, confs
def anchor_depth_offsets(canon_depth, pixels, subsample=8):
device = canon_depth.device
# create a 2D grid of anchor 3D points
H1, W1 = canon_depth.shape
yx = np.mgrid[subsample // 2:H1:subsample, subsample // 2:W1:subsample]
H2, W2 = yx.shape[1:]
cy, cx = yx.reshape(2, -1)
core_depth = canon_depth[cy, cx]
assert (core_depth > 0).all()
# slave 3d points (attached to core 3d points)
core_idxs = {} # core_idxs[img2] = {corr_idx:core_idx}
core_offs = {} # core_offs[img2] = {corr_idx:3d_offset}
for img2, (xy1, _confs) in pixels.items():
px, py = xy1.long().T
# find nearest anchor == block quantization
core_idx = (py // subsample) * W2 + (px // subsample)
core_idxs[img2] = core_idx.to(device)
# compute relative depth offsets w.r.t. anchors
ref_z = core_depth[core_idx]
pts_z = canon_depth[py, px]
offset = pts_z / ref_z
core_offs[img2] = offset.detach().to(device)
return core_idxs, core_offs
def spectral_clustering(graph, k=None, normalized_cuts=False):
graph.fill_diagonal_(0)
# graph laplacian
degrees = graph.sum(dim=-1)
laplacian = torch.diag(degrees) - graph
if normalized_cuts:
i_inv = torch.diag(degrees.sqrt().reciprocal())
laplacian = i_inv @ laplacian @ i_inv
# compute eigenvectors!
eigval, eigvec = torch.linalg.eigh(laplacian)
return eigval[:k], eigvec[:, :k]
def sim_func(p1, p2, gamma):
diff = (p1 - p2).norm(dim=-1)
avg_depth = (p1[:, :, 2] + p2[:, :, 2])
rel_distance = diff / avg_depth
sim = torch.exp(-gamma * rel_distance.square())
return sim
def backproj(K, depthmap, subsample):
H, W = depthmap.shape
uv = np.mgrid[subsample // 2:subsample * W:subsample, subsample // 2:subsample * H:subsample].T.reshape(H, W, 2)
xyz = depthmap.unsqueeze(-1) * geotrf(inv(K), todevice(uv, K.device), ncol=3)
return xyz
def spectral_projection_depth(K, depthmap, subsample, k=64, cache_path='',
normalized_cuts=True, gamma=7, min_norm=5):
try:
if cache_path:
cache_path = cache_path + f'_{k=}_norm={normalized_cuts}_{gamma=}.pth'
lora_proj = torch.load(cache_path, map_location=K.device)
except IOError:
# reconstruct 3d points in camera coordinates
xyz = backproj(K, depthmap, subsample)
# compute all distances
xyz = xyz.reshape(-1, 3)
graph = sim_func(xyz[:, None], xyz[None, :], gamma=gamma)
_, lora_proj = spectral_clustering(graph, k, normalized_cuts=normalized_cuts)
if cache_path:
torch.save(lora_proj.cpu(), mkdir_for(cache_path))
lora_proj, coeffs = lora_encode_normed(lora_proj, depthmap.ravel(), min_norm=min_norm)
# depthmap ~= lora_proj @ coeffs
return coeffs, lora_proj
def lora_encode_normed(lora_proj, x, min_norm, global_norm=False):
# encode the pointmap
coeffs = torch.linalg.pinv(lora_proj) @ x
# rectify the norm of basis vector to be ~ equal
if coeffs.ndim == 1:
coeffs = coeffs[:, None]
if global_norm:
lora_proj *= coeffs[1:].norm() * min_norm / coeffs.shape[1]
elif min_norm:
lora_proj *= coeffs.norm(dim=1).clip(min=min_norm)
# can have rounding errors here!
coeffs = (torch.linalg.pinv(lora_proj.double()) @ x.double()).float()
return lora_proj.detach(), coeffs.detach()
@torch.no_grad()
def spectral_projection_of_depthmaps(imgs, intrinsics, depthmaps, subsample, cache_path=None, **kw):
# recover 3d points
core_depth = []
lora_proj = []
for i, img in enumerate(tqdm(imgs)):
cache = os.path.join(cache_path, 'lora_depth', hash_md5(img)) if cache_path else None
depth, proj = spectral_projection_depth(intrinsics[i], depthmaps[i], subsample,
cache_path=cache, **kw)
core_depth.append(depth)
lora_proj.append(proj)
return core_depth, lora_proj
def reproj2d(Trf, pts3d):
res = (pts3d @ Trf[:3, :3].transpose(-1, -2)) + Trf[:3, 3]
clipped_z = res[:, 2:3].clip(min=1e-3) # make sure we don't have nans!
uv = res[:, 0:2] / clipped_z
return uv.clip(min=-1000, max=2000)
def bfs(tree, start_node):
order, predecessors = sp.csgraph.breadth_first_order(tree, start_node, directed=False)
ranks = np.arange(len(order))
ranks[order] = ranks.copy()
return ranks, predecessors
def compute_min_spanning_tree(pws):
sparse_graph = sp.dok_array(pws.shape)
for i, j in pws.nonzero().cpu().tolist():
sparse_graph[i, j] = -float(pws[i, j])
msp = sp.csgraph.minimum_spanning_tree(sparse_graph)
# now reorder the oriented edges, starting from the central point
ranks1, _ = bfs(msp, 0)
ranks2, _ = bfs(msp, ranks1.argmax())
ranks1, _ = bfs(msp, ranks2.argmax())
# this is the point farther from any leaf
root = np.minimum(ranks1, ranks2).argmax()
# find the ordered list of edges that describe the tree
order, predecessors = sp.csgraph.breadth_first_order(msp, root, directed=False)
order = order[1:] # root not do not have a predecessor
edges = [(predecessors[i], i) for i in order]
return root, edges
def show_reconstruction(shapes_or_imgs, K, cam2w, pts3d, gt_cam2w=None, gt_K=None, cam_size=None, masks=None, **kw):
viz = SceneViz()
cc = cam2w[:, :3, 3]
cs = cam_size or float(torch.cdist(cc, cc).fill_diagonal_(np.inf).min(dim=0).values.median())
colors = 64 + np.random.randint(255 - 64, size=(len(cam2w), 3))
if isinstance(shapes_or_imgs, np.ndarray) and shapes_or_imgs.ndim == 2:
cam_kws = dict(imsizes=shapes_or_imgs[:, ::-1], cam_size=cs)
else:
imgs = shapes_or_imgs
cam_kws = dict(images=imgs, cam_size=cs)
if K is not None:
viz.add_cameras(to_numpy(cam2w), to_numpy(K), colors=colors, **cam_kws)
if gt_cam2w is not None:
if gt_K is None:
gt_K = K
viz.add_cameras(to_numpy(gt_cam2w), to_numpy(gt_K), colors=colors, marker='o', **cam_kws)
if pts3d is not None:
for i, p in enumerate(pts3d):
if not len(p):
continue
if masks is None:
viz.add_pointcloud(to_numpy(p), color=tuple(colors[i].tolist()))
else:
viz.add_pointcloud(to_numpy(p), mask=masks[i], color=imgs[i])
viz.show(**kw)