File size: 1,907 Bytes
697d9eb
6bfd727
32a5890
79ca19a
fc9d8f9
8504d0e
fc9d8f9
8504d0e
 
 
 
 
0370b13
7983ea4
8504d0e
6bfd727
 
 
 
 
8504d0e
6bfd727
 
0370b13
 
6e17f3a
 
cc2e0bf
3d560b0
cc2e0bf
 
 
 
 
 
 
 
 
 
b13c647
 
 
 
 
 
cc2e0bf
 
 
 
 
 
 
 
307add3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from fastapi import FastAPI, UploadFile, File
from transformers import pipeline
from fastai.vision.all import *
from PIL import Image
import os

access_token = os.getenv("access_token")
# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")

pipe = pipeline("text2text-generation", model="google/flan-t5-small")
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
learn = load_learner('model.pkl')

@app.get("/generate")
def generate(text: str):
    """
    Using the text2text-generation pipeline from `transformers`, generate text
    from the given input text. The model used is `google/flan-t5-small`, which
    can be found [here](https://huggingface.co/google/flan-t5-small).
    """
    output = pipe(text)
    return {"output": output[0]["generated_text"]}

@app.post("/face-analyse")
async def face_analyse(file: UploadFile = File(...)):
    # Read the uploaded file content
    request_object_content = await file.read()
    
    try:
        # Attempt to open the image
        img = Image.open(io.BytesIO(request_object_content))
    except Exception as e:
        return {"error": "Failed to open the image file. Make sure it is a valid image file."}

    # Check if img is None or not
    if img is None:
        return {"error": "Failed to open the image file."}
    
    try:
        # Resize the image to 300x300 pixels
        img = img.resize((300, 300))
    except Exception as e:
        return {"error": "Failed to resize the image."}

    try:
        # Assuming 'learn' is your image classifier model
        pred, idx, probs = learn.predict(img)
    except Exception as e:
        return {"error": "Failed to make predictions."}

    # Assuming categories is a list of category labels
    return dict(zip(categories, map(float, probs)))