Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, UploadFile | |
from transformers import pipeline | |
from fastai.vision.all import * | |
# NOTE - we configure docs_url to serve the interactive Docs at the root path | |
# of the app. This way, we can use the docs as a landing page for the app on Spaces. | |
app = FastAPI(docs_url="/") | |
pipe = pipeline("text2text-generation", model="google/flan-t5-small") | |
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square') | |
learn = load_learner('model.pkl') | |
def generate(text: str): | |
""" | |
Using the text2text-generation pipeline from `transformers`, generate text | |
from the given input text. The model used is `google/flan-t5-small`, which | |
can be found [here](https://huggingface.co/google/flan-t5-small). | |
""" | |
output = pipe(text) | |
return {"output": output[0]["generated_text"]} | |
async def create_upload_file(file: UploadFile): | |
pred, idx, probs = learn.predict(img) | |
return dict(zip(categories, map(float, probs))) | |
# pred, idx, probs = learn.predict(img) | |
# return dict(zip(categories, map(float, probs))) |