File size: 2,554 Bytes
2a96c49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Importation  

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoModel, AutoTokenizer
from transformers import AutoModelForSequenceClassification, AutoTokenizer

import gradio as gr
from gradio.components import Label

path = "./weights"
model = AutoModel.from_pretrained(path, trust_remote_code=True)
class CamembertClass(torch.nn.Module):
    def __init__(self):
        super(CamembertClass, self).__init__()
        self.l1 = model
        self.dropout = torch.nn.Dropout(0.1)
        self.pre_classifier = torch.nn.Linear(1024, 1024)
        self.classifier = torch.nn.Linear(1024, 3)

    def forward(self, input_ids, attention_mask, token_type_ids):
        output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
        hidden_state = output_1[0]
        pooler = hidden_state[:, 0]
        pooler = self.pre_classifier(pooler)
        pooler = torch.nn.ReLU()(pooler)
        pooler = self.dropout(pooler)
        output = self.classifier(pooler)
        return output
    
    #model_gradio = CamembertClass()
path = "./pytorch_model.bin"
model = torch.load(path, map_location="cpu")
path_tokenizer = "./"
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)

model.eval()  # Mettez votre modèle en mode évaluation

# Fonction d'inférence pour Gradio
def predict(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    
    # Extract necessary inputs for the model
    input_ids = inputs['input_ids']
    attention_mask = inputs['attention_mask']
    token_type_ids = inputs.get('token_type_ids', None)  # Some models do not use segment IDs
    
    # Make prediction
    with torch.no_grad():
    # Directly use outputs if your model returns logits directly
        logits = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)

 
    # Convert logits to probabilities
    probabilities = torch.softmax(logits, dim=1).detach().cpu().numpy()[0]
    # Replace the following with your actual classes
    classes = ['Negative Sentiment', 'Positive Sentiment']
    return {classes[i]: float(probabilities[i]) for i in range(len(classes))}

# Création de l'interface Gradio
iface = gr.Interface(fn=predict,
                     inputs=gr.components.Textbox(placeholder="Enter your text here..."),
                     outputs=gr.components.Label(num_top_classes=2))
iface.launch(share=True)