|
#include "getrows.cuh" |
|
#include "dequantize.cuh" |
|
|
|
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t> |
|
static __global__ void k_get_rows( |
|
const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst, |
|
const int64_t ne00, |
|
const int64_t ne12, |
|
const size_t s1, const size_t s2, const size_t s3, |
|
const size_t nb01, const size_t nb02, const size_t nb03, |
|
const size_t s10, const size_t s11, const size_t s12) { |
|
|
|
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2; |
|
const int i10 = blockDim.y*blockIdx.y + threadIdx.y; |
|
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12; |
|
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12; |
|
|
|
if (i00 >= ne00) { |
|
return; |
|
} |
|
|
|
const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; |
|
|
|
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; |
|
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03; |
|
|
|
const int ib = i00/qk; |
|
const int iqs = (i00%qk)/qr; |
|
const int iybs = i00 - i00%qk; |
|
const int y_offset = qr == 1 ? 1 : qk/2; |
|
|
|
|
|
dfloat2 v; |
|
dequantize_kernel(src0_row, ib, iqs, v); |
|
|
|
dst_row[iybs + iqs + 0] = v.x; |
|
dst_row[iybs + iqs + y_offset] = v.y; |
|
} |
|
|
|
template<typename src0_t, typename dst_t> |
|
static __global__ void k_get_rows_float( |
|
const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst, |
|
const int64_t ne00, |
|
const int64_t ne12, |
|
const size_t s1, const size_t s2, const size_t s3, |
|
const size_t nb01, const size_t nb02, const size_t nb03, |
|
const size_t s10, const size_t s11, const size_t s12) { |
|
|
|
const int i00 = blockIdx.x*blockDim.x + threadIdx.x; |
|
const int i10 = blockDim.y*blockIdx.y + threadIdx.y; |
|
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12; |
|
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12; |
|
|
|
if (i00 >= ne00) { |
|
return; |
|
} |
|
|
|
const int i01 = src1[i10*s10 + i11*s11 + i12*s12]; |
|
|
|
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3; |
|
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03); |
|
|
|
dst_row[i00] = src0_row[i00]; |
|
} |
|
|
|
template<typename grad_t, typename dst_t> |
|
static __global__ void k_get_rows_back_float( |
|
const grad_t * __restrict__ grad, const int32_t * __restrict__ rows, dst_t * __restrict__ dst, const int64_t ncols, const int64_t nrows_grad) { |
|
const int col = blockIdx.x*blockDim.x + threadIdx.x; |
|
|
|
if (col >= ncols) { |
|
return; |
|
} |
|
|
|
const int dst_row = blockIdx.y*blockDim.y + threadIdx.y; |
|
|
|
float sum = 0.0f; |
|
|
|
for (int64_t i = 0; i < nrows_grad; ++i) { |
|
if (rows[i] != dst_row) { |
|
continue; |
|
} |
|
sum += grad[i*ncols + col]; |
|
} |
|
|
|
dst[dst_row*ncols + col] = sum; |
|
} |
|
|
|
template<int qk, int qr, dequantize_kernel_t dq> |
|
static void get_rows_cuda( |
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, |
|
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { |
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS |
|
|
|
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); |
|
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE); |
|
const dim3 block_nums(block_num_x, ne10, ne11*ne12); |
|
|
|
|
|
|
|
const size_t s1 = nb1 / ggml_element_size(dst); |
|
const size_t s2 = nb2 / ggml_element_size(dst); |
|
const size_t s3 = nb3 / ggml_element_size(dst); |
|
|
|
const size_t s10 = nb10 / ggml_element_size(src1); |
|
const size_t s11 = nb11 / ggml_element_size(src1); |
|
const size_t s12 = nb12 / ggml_element_size(src1); |
|
|
|
|
|
GGML_ASSERT(ne00 % 2 == 0); |
|
|
|
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>( |
|
src0_dd, src1_dd, dst_dd, |
|
ne00, |
|
ne12, |
|
s1, s2, s3, |
|
nb01, nb02, nb03, |
|
s10, s11, s12); |
|
|
|
GGML_UNUSED(dst); |
|
} |
|
|
|
template<typename src0_t> |
|
static void get_rows_cuda_float( |
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, |
|
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { |
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS |
|
|
|
GGML_ASSERT(ne13 == 1); |
|
|
|
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); |
|
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE; |
|
const dim3 block_nums(block_num_x, ne10, ne11*ne12); |
|
|
|
|
|
|
|
const size_t s1 = nb1 / ggml_element_size(dst); |
|
const size_t s2 = nb2 / ggml_element_size(dst); |
|
const size_t s3 = nb3 / ggml_element_size(dst); |
|
|
|
const size_t s10 = nb10 / ggml_element_size(src1); |
|
const size_t s11 = nb11 / ggml_element_size(src1); |
|
const size_t s12 = nb12 / ggml_element_size(src1); |
|
|
|
|
|
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>( |
|
src0_dd, src1_dd, dst_dd, |
|
ne00, |
|
ne12, |
|
s1, s2, s3, |
|
nb01, nb02, nb03, |
|
s10, s11, s12); |
|
|
|
GGML_UNUSED(dst); |
|
} |
|
|
|
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
|
const ggml_tensor * src0 = dst->src[0]; |
|
const ggml_tensor * src1 = dst->src[1]; |
|
|
|
const void * src0_d = (const void *) src0->data; |
|
const int32_t * src1_d = (const int32_t *) src1->data; |
|
float * dst_d = (float *) dst->data; |
|
|
|
cudaStream_t stream = ctx.stream(); |
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32); |
|
GGML_ASSERT(dst->type == GGML_TYPE_F32); |
|
|
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); |
|
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type)); |
|
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type)); |
|
|
|
switch (src0->type) { |
|
case GGML_TYPE_F16: |
|
get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream); |
|
break; |
|
case GGML_TYPE_F32: |
|
get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream); |
|
break; |
|
case GGML_TYPE_Q4_0: |
|
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream); |
|
break; |
|
case GGML_TYPE_Q4_1: |
|
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream); |
|
break; |
|
case GGML_TYPE_Q5_0: |
|
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream); |
|
break; |
|
case GGML_TYPE_Q5_1: |
|
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream); |
|
break; |
|
case GGML_TYPE_Q8_0: |
|
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream); |
|
break; |
|
default: |
|
|
|
GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type)); |
|
break; |
|
} |
|
} |
|
|
|
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
|
const ggml_tensor * src0 = dst->src[0]; |
|
const ggml_tensor * src1 = dst->src[1]; |
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS |
|
|
|
const float * src0_d = (const float *) src0->data; |
|
const int32_t * src1_d = (const int32_t *) src1->data; |
|
float * dst_d = (float *) dst->data; |
|
|
|
cudaStream_t stream = ctx.stream(); |
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32); |
|
GGML_ASSERT(src1->type == GGML_TYPE_I32); |
|
GGML_ASSERT(dst->type == GGML_TYPE_F32); |
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0)); |
|
GGML_ASSERT(ggml_is_contiguous(src1)); |
|
GGML_ASSERT(ggml_is_contiguous(dst)); |
|
|
|
GGML_ASSERT(ne02*ne03 == 1); |
|
GGML_ASSERT(ne12*ne13 == 1); |
|
GGML_ASSERT(ne2*ne3 == 1); |
|
|
|
const dim3 block_dims(CUDA_GET_ROWS_BACK_BLOCK_SIZE, 1, 1); |
|
const int block_num_x = (ne00 + CUDA_GET_ROWS_BACK_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BACK_BLOCK_SIZE; |
|
const dim3 block_nums(block_num_x, ne1, 1); |
|
|
|
k_get_rows_back_float<<<block_nums, block_dims, 0, stream>>>(src0_d, src1_d, dst_d, ne00, ne10); |
|
} |
|
|