Steven10429's picture
llama.cpp
61b850a
#define CL_TARGET_OPENCL_VERSION 220
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
// suppress warnings in CL headers for GCC and Clang
#pragma GCC diagnostic ignored "-Woverlength-strings"
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
#endif
#include "ggml-opencl.h"
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include "ggml.h"
#include <CL/cl.h>
#include <string.h>
#include <cstddef>
#include <cstdint>
#include <atomic>
#include <fstream>
#include <limits>
#include <vector>
#include <string>
#include <cmath>
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define UNUSED(x) (void)(x)
#define CL_CHECK(err) \
do { \
cl_int err_ = (err); \
if (err_ != CL_SUCCESS) { \
GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
#err, err_, __FILE__, __LINE__); \
GGML_ASSERT(0); \
} \
} while (0)
//------------------------------------------------------------------------------
// OpenCL
//------------------------------------------------------------------------------
bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
enum GPU_FAMILY {
ADRENO,
INTEL,
UNKNOWN,
};
enum ADRENO_GPU_GEN {
ADRENO_UNKNOWN,
A7X,
A8X,
X1E,
};
static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
if (strstr(device_name, "730") ||
strstr(device_name, "740") ||
strstr(device_name, "750")) {
return ADRENO_GPU_GEN::A7X;
}
if (strstr(device_name, "830")) {
return ADRENO_GPU_GEN::A8X;
}
if (strstr(device_name, "X1")) {
return ADRENO_GPU_GEN::X1E;
}
return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
}
static int get_adreno_cl_compiler_version(const char *driver_version) {
std::string driver_ver_str(driver_version);
size_t compiler_ver_pos = driver_ver_str.find("E031");
size_t compiler_ver_len = 13;
size_t compiler_ver_offset = 5;
if (compiler_ver_pos == std::string::npos) {
compiler_ver_pos = driver_ver_str.find("DX");
if (compiler_ver_pos == std::string::npos) {
return -1;
}
compiler_ver_len = 11;
compiler_ver_offset = 3;
}
std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
std::string major_ver_str = compiler_ver_str.substr(compiler_ver_offset, 2);
return std::atoi(major_ver_str.c_str());
}
// backend device context
struct ggml_backend_opencl_device_context {
cl_platform_id platform;
std::string platform_name;
cl_device_id device;
std::string device_name;
};
// backend context
struct ggml_backend_opencl_context {
cl_device_id device;
std::string device_name;
std::string driver_version;
GPU_FAMILY gpu_family;
ADRENO_GPU_GEN adreno_gen;
cl_int alignment;
size_t max_alloc_size;
bool fp16_support;
int adreno_wave_size;
cl_context context;
cl_command_queue queue;
cl_program program;
cl_program program_1;
cl_program program_2;
cl_kernel kernel_add, kernel_add_row;
cl_kernel kernel_mul, kernel_mul_row;
cl_kernel kernel_scale;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
cl_kernel kernel_relu;
cl_kernel kernel_clamp;
cl_kernel kernel_norm;
cl_kernel kernel_rms_norm;
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
cl_kernel kernel_soft_max, kernel_soft_max_4;
cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
cl_kernel kernel_mul_mat_f32_f32;
cl_kernel kernel_mul_mat_f16_f16;
cl_kernel kernel_mul_mat_f16_f32_1row;
cl_kernel kernel_mul_mat_f16_f32;
cl_kernel kernel_mul_mat_f16_f32_l4;
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0, kernel_mul_mat_q4_0_f32_flat;
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
cl_kernel kernel_convert_block_q4_0_noshuffle, kernel_mul_mat_q4_0_f32_flat_v0,
kernel_mul_mat_q4_0_f32_flat_img_v0;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Transpose kernels
cl_program program_transpose_32;
cl_program program_transpose_32_16;
cl_program program_transpose_16;
cl_kernel kernel_transpose_32;
cl_kernel kernel_transpose_32_16;
cl_kernel kernel_transpose_16;
cl_mem A_s_d_max; // max scale buffer size for transpose
cl_mem A_q_d_max; // max weight buffer size for transpose
cl_mem B_d_max; // max activation buffer size for transpose
// Gemm and Gemv related programs, kernels, etc
cl_program program_CL_gemm;
cl_program program_CL_gemv_general;
cl_program program_CL_gemv_4096_1_11008;
cl_program program_CL_gemv_4096_1_4096;
cl_program program_CL_gemv_11008_1_4096;
cl_program program_CL_gemv_32000_1_4096;
cl_kernel CL_mul_mat_Ab_Bi_8x4;
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
};
static ggml_backend_device g_ggml_backend_opencl_device;
static ggml_backend_opencl_device_context g_ggml_ctx_dev_main {
/*.platform =*/ nullptr,
/*.platform_nane =*/ "",
/*.device =*/ nullptr,
/*.device_name =*/ "",
};
static int ggml_backend_opencl_n_devices = 0;
// Profiling
#ifdef GGML_OPENCL_PROFILING
struct ProfilingInfo {
std::string op_name;
std::string kernel_name;
// Kernel execution time in nanoseconds.
cl_ulong duration_ns;
// Global and local work sizes.
size_t global_size[3];
size_t local_size[3];
// Op output size.
size_t output_size[4];
};
std::vector<ProfilingInfo> g_profiling_info;
#endif
inline std::string read_file(const std::string &path) {
std::ifstream ifs(path);
if (!ifs) {
return "";
}
std::string text;
ifs.seekg(0, std::ios::end);
text.resize(ifs.tellg());
ifs.seekg(0, std::ios::beg);
ifs.read(&text[0], text.size());
return text;
}
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
cl_program p;
char *program_log;
size_t program_size;
size_t log_size;
int err;
program_size = strlen(program_buffer);
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
if(err < 0) {
GGML_LOG_ERROR("OpenCL error creating program");
exit(1);
}
err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
if(err < 0) {
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
free(program_log);
exit(1);
}
return p;
}
static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
static bool initialized = false;
static ggml_backend_opencl_context *backend_ctx = nullptr;
if (initialized) {
return backend_ctx;
}
ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
GGML_ASSERT(dev_ctx);
GGML_ASSERT(dev_ctx->platform == nullptr);
GGML_ASSERT(dev_ctx->device == nullptr);
GGML_ASSERT(backend_ctx == nullptr);
initialized = true;
backend_ctx = new ggml_backend_opencl_context();
backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
cl_int err;
#ifdef GGML_PROFILE_OPENCL
GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
#endif
struct cl_device;
struct cl_platform {
cl_platform_id id;
unsigned number;
char name[128];
char vendor[128];
struct cl_device * devices;
unsigned n_devices;
struct cl_device * default_device;
};
struct cl_device {
struct cl_platform * platform;
cl_device_id id;
unsigned number;
cl_device_type type;
char name[128];
};
enum { NPLAT = 16, NDEV = 16 };
struct cl_platform platforms[NPLAT];
unsigned n_platforms = 0;
struct cl_device devices[NDEV];
unsigned n_devices = 0;
struct cl_device * default_device = NULL;
cl_platform_id platform_ids[NPLAT];
if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
return backend_ctx;
}
for (unsigned i = 0; i < n_platforms; i++) {
struct cl_platform * p = &platforms[i];
p->number = i;
p->id = platform_ids[i];
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
cl_device_id device_ids[NDEV];
cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
p->n_devices = 0;
} else {
CL_CHECK(clGetDeviceIDsError);
}
p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
p->default_device = NULL;
for (unsigned j = 0; j < p->n_devices; j++) {
struct cl_device * d = &devices[n_devices];
d->number = n_devices++;
d->id = device_ids[j];
d->platform = p;
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
p->default_device = d;
}
}
if (default_device == NULL && p->default_device != NULL) {
default_device = p->default_device;
}
}
if (n_devices == 0) {
GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
return backend_ctx;
}
char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
char * user_device_string = getenv("GGML_OPENCL_DEVICE");
int user_platform_number = -1;
int user_device_number = -1;
unsigned n;
if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
user_platform_number = (int)n;
}
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
user_device_number = (int)n;
}
if (user_platform_number != -1 && user_device_number != -1) {
cl_platform* platform = &platforms[user_platform_number];
if ((unsigned)user_device_number >= platform->n_devices) {
GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
exit(1);
}
default_device = &platform->devices[user_device_number];
} else {
struct cl_device * selected_devices = devices;
unsigned n_selected_devices = n_devices;
if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
for (unsigned i = 0; i < n_platforms; i++) {
struct cl_platform * p = &platforms[i];
if (strstr(p->name, user_platform_string) != NULL ||
strstr(p->vendor, user_platform_string) != NULL) {
user_platform_number = (int)i;
break;
}
}
if (user_platform_number == -1) {
GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
exit(1);
}
}
if (user_platform_number != -1) {
struct cl_platform * p = &platforms[user_platform_number];
selected_devices = p->devices;
n_selected_devices = p->n_devices;
default_device = p->default_device;
if (n_selected_devices == 0) {
GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
exit(1);
}
}
if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
for (unsigned i = 0; i < n_selected_devices; i++) {
struct cl_device * d = &selected_devices[i];
if (strstr(d->name, user_device_string) != NULL) {
user_device_number = d->number;
break;
}
}
if (user_device_number == -1) {
GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
exit(1);
}
}
if (user_device_number != -1) {
selected_devices = &devices[user_device_number];
n_selected_devices = 1;
default_device = &selected_devices[0];
}
GGML_ASSERT(n_selected_devices > 0);
if (default_device == NULL) {
default_device = &selected_devices[0];
}
}
GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
GGML_LOG_INFO("ggml_opencl: selecting device: '%s'\n", default_device->name);
if (default_device->type != CL_DEVICE_TYPE_GPU) {
GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
}
dev_ctx->platform = default_device->platform->id;
dev_ctx->device = default_device->id;
backend_ctx->device = default_device->id;
if (strstr(default_device->name, "Adreno")) {
backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);
// Default wave size is 128, A8x uses 64.
if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A8X) {
backend_ctx->adreno_wave_size = 64;
} else if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A7X ||
backend_ctx->adreno_gen == ADRENO_GPU_GEN::X1E) {
backend_ctx->adreno_wave_size = 128;
} else {
backend_ctx->adreno_wave_size = 128;
GGML_LOG_WARN("ggml_opencl: Unsupported Adreno GPU: %s, "
"using wave size %d, "
"may not work as expected\n",
backend_ctx->device_name.c_str(), backend_ctx->adreno_wave_size);
}
} else if (strstr(default_device->name, "Intel")) {
backend_ctx->gpu_family = GPU_FAMILY::INTEL;
} else {
GGML_LOG_ERROR("Unsupported GPU: %s\n", default_device->name);
backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
return backend_ctx;
}
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
"run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
return backend_ctx;
}
#endif
// Populate backend device name
dev_ctx->platform_name = default_device->platform->name;
dev_ctx->device_name = default_device->name;
backend_ctx->device_name = default_device->name;
// A local ref of cl_device_id for convenience
cl_device_id device = backend_ctx->device;
// Check device OpenCL version, OpenCL 2.0 or above is required
size_t device_ver_str_size;
clGetDeviceInfo(device, CL_DEVICE_VERSION, 0, NULL, &device_ver_str_size);
char *device_ver_buffer = (char *)alloca(device_ver_str_size + 1);
clGetDeviceInfo(device, CL_DEVICE_VERSION, device_ver_str_size, device_ver_buffer, NULL);
device_ver_buffer[device_ver_str_size] = '\0';
GGML_LOG_INFO("ggml_opencl: device OpenCL version: %s\n", device_ver_buffer);
if (strstr(device_ver_buffer, "OpenCL 2") == NULL &&
strstr(device_ver_buffer, "OpenCL 3") == NULL) {
GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
return backend_ctx;
}
// Check driver version
size_t driver_version_str_size;
clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
char *driver_version = (char *)alloca(driver_version_str_size + 1);
clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
driver_version[driver_version_str_size] = '\0';
GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
backend_ctx->driver_version = driver_version;
int adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
bool has_vector_subgroup_broadcast =
adreno_cl_compiler_version >= 47 || adreno_cl_compiler_version == 17;
GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
has_vector_subgroup_broadcast ? "true" : "false");
size_t ext_str_size;
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
char *ext_buffer = (char *)alloca(ext_str_size + 1);
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
// Check if ext_buffer contains cl_khr_fp16
backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
// fp16 is required
if (!backend_ctx->fp16_support) {
GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
return backend_ctx;
}
// If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
// optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
if (strstr(device_ver_buffer, "OpenCL 3") &&
strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
"(note that subgroups is an optional feature in OpenCL 3.0)\n");
return backend_ctx;
}
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &backend_ctx->alignment, NULL));
GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
// Check SVM.
cl_device_svm_capabilities svm_caps;
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
// Print out configurations
#ifdef GGML_OPENCL_SOA_Q
GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
#endif // GGML_OPENCL_SOA_Q
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
cl_context_properties properties[] = {
(intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)dev_ctx->platform, 0
};
CL_CHECK((backend_ctx->context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
// A local ref of cl_context for convenience
cl_context context = backend_ctx->context;
//CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
// (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
// (queue = clCreateCommandQueue(context, device, 0, &err), err)
//)));
cl_command_queue_properties command_queue_props = 0;
#ifdef GGML_OPENCL_PROFILING
command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
#endif
CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "ggml-opencl.cl.h"
};
#else
const std::string kernel_src = read_file("ggml-opencl.cl");
#endif
std::string compile_opts =
"-cl-std=CL2.0 -cl-mad-enable -cl-unsafe-math-optimizations "
"-cl-finite-math-only -cl-fast-relaxed-math ";
backend_ctx->program = build_program_from_source(context, device, kernel_src.c_str(), compile_opts);
// Non matmul kernels.
CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f32", &err), err));
CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f16", &err), err));
CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program, "kernel_get_rows_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program, "kernel_add", &err), err));
CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program, "kernel_add_row", &err), err));
CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program, "kernel_mul", &err), err));
CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program, "kernel_mul_row", &err), err));
CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program, "kernel_scale", &err), err));
CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program, "kernel_silu", &err), err));
CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err));
CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err));
CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err));
CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err));
CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err));
CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err));
CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program, "kernel_rms_norm", &err), err));
CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf", &err), err));
CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf_8", &err), err));
CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program, "kernel_soft_max", &err), err));
CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4", &err), err));
CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f32", &err), err));
CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err));
CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err));
CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f32", &err), err));
// Matmul kernels.
CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f32_f32", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f16", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_1row", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_l4", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_v", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_flat", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_convert_block_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_restore_block_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
// Load additional mulmat kernels.
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_1 {
#include "ggml-opencl_mm.cl.h"
};
#else
const std::string kernel_src_1 = read_file("ggml-opencl_mm.cl");
#endif
backend_ctx->program_1 = build_program_from_source(context, device, kernel_src_1.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mv_q6_K_f32", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_v0", &err), err));
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_img_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_img_v0", &err), err));
// Load additional data conversion kernels.
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_2 {
#include "ggml-opencl_cvt.cl.h"
};
#else
const std::string kernel_src_2 = read_file("ggml-opencl_cvt.cl");
#endif
backend_ctx->program_2 = build_program_from_source(context, device, kernel_src_2.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err));
// Kernels for Adreno
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string transpose_32_src {
#include "ggml-opencl_transpose_32.cl.h"
};
#else
const std::string transpose_32_src = read_file("ggml-opencl_transpose_32.cl");
#endif
backend_ctx->program_transpose_32 = build_program_from_source(context, device, transpose_32_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose_32, "kernel_transpose_32", &err), err));
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string transpose_32_16_src {
#include "ggml-opencl_transpose_32_16.cl.h"
};
#else
const std::string transpose_32_16_src = read_file("ggml-opencl_transpose_32_16.cl");
#endif
backend_ctx->program_transpose_32_16 = build_program_from_source(context, device, transpose_32_16_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose_32_16, "kernel_transpose_32_16", &err), err));
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string transpose_16_src {
#include "ggml-opencl_transpose_16.cl.h"
};
#else
const std::string transpose_16_src = read_file("ggml-opencl_transpose_16.cl");
#endif
backend_ctx->program_transpose_16 = build_program_from_source(context, device, transpose_16_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose_16, "kernel_transpose_16", &err), err));
// Gemv general
std::string CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_CL_gemv_general {
#include "ggml-opencl_gemv_noshuffle_general.cl.h"
};
#else
const std::string kernel_src_CL_gemv_general = read_file("ggml-opencl_gemv_noshuffle_general.cl");
#endif
backend_ctx->program_CL_gemv_general = build_program_from_source(
context, device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
// Gemv 2048, 16384
CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DLINE_STRIDE_A=2048 "
" -DBLOCK_STRIDE_A=16384 "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_CL_gemv {
#include "ggml-opencl_gemv_noshuffle.cl.h"
};
#else
const std::string kernel_src_CL_gemv = read_file("ggml-opencl_gemv_noshuffle.cl");
#endif
backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
// Gemv 2048, 16384
CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DLINE_STRIDE_A=2048 "
" -DBLOCK_STRIDE_A=16384 "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
// Gemv 5504, 44032
CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DLINE_STRIDE_A=5504 "
" -DBLOCK_STRIDE_A=44032 "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
// Gemv 16000, 128000
CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DLINE_STRIDE_A=16000 "
" -DBLOCK_STRIDE_A=128000 "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
// Gemm
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_CL_gemm {
#include "ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h"
};
#else
const std::string kernel_src_CL_gemm = read_file("ggml-opencl_mul_mat_Ab_Bi_8x4.cl");
#endif
backend_ctx->program_CL_gemm = build_program_from_source(context, device, kernel_src_CL_gemm.c_str(), compile_opts);
CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
// Allocate intermediate buffers and images
size_t max_A_q_d_bytes = 311164928;
size_t max_A_s_d_bytes = 38895616;
size_t max_B_d_bytes = 45088768;
CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
// For now we support a single devices
ggml_backend_opencl_n_devices = 1;
return backend_ctx;
}
static void ggml_cl2_free(void) {
#ifdef GGML_OPENCL_PROFILING
FILE * fperf = fopen("cl_profiling.csv", "w");
if (!fperf) {
GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
return;
}
float total_kernel_time = 0;
fprintf(fperf, "op name, kernel name, duration (ms), global size, local size, output size\n");
for (const ProfilingInfo & info : g_profiling_info) {
total_kernel_time += info.duration_ns/1.e6f;
fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
info.op_name.c_str(), info.kernel_name.c_str(), info.duration_ns/1.e6f,
info.global_size[0], info.global_size[1], info.global_size[2],
info.local_size[0], info.local_size[2], info.local_size[2],
info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
}
fclose(fperf);
GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
#endif
}
//------------------------------------------------------------------------------
// Tensor extra management
//------------------------------------------------------------------------------
struct ggml_tensor_extra_cl {
// The buffer object that holds the data.
cl_mem data_device;
// The offset into the buffer object. This is primarily for scratch buffer
// and view operation.
// NB: this offset no longer includes view offset (view_offs). Whenever this
// offset is used, view_offs should be considered.
cl_ulong offset;
// The actual size of the cl_mem object. This is needed when returning the
// block to the pool.
size_t actual_size;
void reset() {
data_device = nullptr;
offset = 0;
actual_size = 0;
}
};
// Additional tensor extra structs for quantized tensors.
// These tensors are loaded from files and should not be allocated in scratch --
// they should always be allocated from the pool. Hence, they do not have an
// `offset`, which indicate their locations in the scratch buffer.
struct ggml_tensor_extra_cl_q4_0 {
// Quantized values.
cl_mem q = nullptr;
// Quantized values in image1d_buffer_t.
cl_mem q_img = nullptr;
// Scales.
cl_mem d = nullptr;
// Scales in image1d_buffer_t.
cl_mem d_img = nullptr;
// Size of quantized values.
size_t size_q = 0;
// Size of scales.
size_t size_d = 0;
~ggml_tensor_extra_cl_q4_0() {
reset();
}
void reset() {
// q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
// They must be properly released so that the original buffer can be
// properly released to avoid memory leak.
if (q != nullptr) {
CL_CHECK(clReleaseMemObject(q));
q = nullptr;
}
if (d != nullptr) {
CL_CHECK(clReleaseMemObject(d));
d = nullptr;
}
// Currently, q_img and d_img are only initialized when SMALL_ALLOC is
// enabled. They point to the images in ggml_backend_opencl_buffer_context.
// So, there is no need to release them here.
// TODO: initialize them for non SMALL_PATH path, or remove them.
q_img = nullptr;
d_img = nullptr;
size_q = 0;
size_d = 0;
}
};
//------------------------------------------------------------------------------
// Backend API
//------------------------------------------------------------------------------
//
// backend
//
static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
return "OpenCL";
UNUSED(backend);
}
static void ggml_backend_opencl_free(ggml_backend_t backend) {
ggml_cl2_free();
GGML_UNUSED(backend);
}
static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_UNUSED(backend);
GGML_UNUSED(tensor);
GGML_UNUSED(data);
GGML_UNUSED(offset);
GGML_UNUSED(size);
}
static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_UNUSED(backend);
GGML_UNUSED(tensor);
GGML_UNUSED(data);
GGML_UNUSED(offset);
GGML_UNUSED(size);
}
static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
GGML_UNUSED(backend);
GGML_UNUSED(src);
GGML_UNUSED(dst);
return false;
}
static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
GGML_UNUSED(backend);
}
static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
bool ok = ggml_cl_compute_forward(backend, node);
if (!ok) {
GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
}
return GGML_STATUS_SUCCESS;
}
static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
GGML_UNUSED(dev);
switch (op->op) {
case GGML_OP_NONE:
return true;
case GGML_OP_GET_ROWS:
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
return true;
case GGML_TYPE_Q4_0:
#ifdef GGML_OPENCL_SOA_Q
// We do not support flattened Q4_0 (and possibly other Q's)
return false;
#else // GGML_OPENCL_SOA_Q
return true;
#endif // GGML_OPENCL_SOA_Q
default:
return false;
}
case GGML_OP_CPY:
case GGML_OP_DUP:
case GGML_OP_CONT:
switch (op->src[0]->type) {
case GGML_TYPE_F32:
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return true;
default:
return false;
}
case GGML_TYPE_F16:
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return true;
default:
return false;
}
default:
return false;
}
case GGML_OP_ADD:
case GGML_OP_SCALE:
case GGML_OP_MUL:
return true;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
return ggml_is_contiguous(op->src[0]);
default:
return false;
}
case GGML_OP_CLAMP:
case GGML_OP_SOFT_MAX:
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;
case GGML_OP_MUL_MAT:
if (op->src[0]->type == GGML_TYPE_F16) {
return true;
} else if (op->src[0]->type == GGML_TYPE_F32) {
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
} else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
op->src[0]->type == GGML_TYPE_Q6_K) {
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
return false;
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
case GGML_OP_DIAG_MASK_INF:
return op->ne[3] == 1;
case GGML_OP_ROPE:
return true;
default:
return false;
}
}
// Forward declaration - implementation appears later in the file.
static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
static ggml_guid_t ggml_backend_opencl_guid() {
static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
return &guid;
}
static ggml_backend_i ggml_backend_opencl_i = {
/* .get_name = */ ggml_backend_opencl_name,
/* .free = */ ggml_backend_opencl_free,
/* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
/* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
/* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
/* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_opencl_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
ggml_backend_t ggml_backend_opencl_init(void) {
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_opencl_guid(),
/* .interface = */ ggml_backend_opencl_i,
/* .device = */ dev,
/* .context = */ backend_ctx
};
return backend;
}
bool ggml_backend_is_opencl(ggml_backend_t backend) {
return backend && backend->iface.get_name == ggml_backend_opencl_name;
}
//
// buffer
//
struct ggml_backend_opencl_buffer_context {
// A buffer context can hold multiple cl_mem objects. This is for flattening
// quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
// each tensor is allocated a separate buffer. When flattening is enabled
// with small allocation, each tensor is backed by two cl_mem objects (for
// quants and scales) packed into a backend_opencl_buffer.
ggml_backend_opencl_buffer_context(cl_mem buf)
: name("OpenCL") {
buffer.push_back(buf);
}
~ggml_backend_opencl_buffer_context() {
for (cl_mem buf : buffer) {
CL_CHECK(clReleaseMemObject(buf));
}
for (cl_mem im : img) {
CL_CHECK(clReleaseMemObject(im));
}
// Delete all extras to trigger their destructors
for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
delete e;
}
for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
delete e;
}
for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
delete e;
}
for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
delete e;
}
}
ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
ggml_tensor_extra_cl * extra;
if (temp_tensor_extras.empty()) {
extra = new ggml_tensor_extra_cl();
} else {
extra = temp_tensor_extras.back();
temp_tensor_extras.pop_back();
}
temp_tensor_extras_in_use.push_back(extra);
extra->reset();
return extra;
}
ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
ggml_tensor_extra_cl_q4_0 * extra;
if (temp_tensor_extras_q4_0.empty()) {
extra = new ggml_tensor_extra_cl_q4_0();
} else {
extra = temp_tensor_extras_q4_0.back();
temp_tensor_extras_q4_0.pop_back();
}
temp_tensor_extras_q4_0_in_use.push_back(extra);
extra->reset();
return extra;
}
void reset() {
for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
temp_tensor_extras.push_back(e);
}
temp_tensor_extras_in_use.clear();
for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
temp_tensor_extras_q4_0.push_back(e);
}
temp_tensor_extras_q4_0_in_use.clear();
}
// Pools for extras. Available extras are in `temp_tensor_extras`. Extras
// being used are in `temp_tensor_extras_in_use`. At the first run, new
// extras get created and put in `in_use`. When the buffer is reset via
// the `reset` callback, all extras in `in_use` get moved to available extras
// for reuse.
std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
// The buffer_context is initially created by ggml_backend_buft_alloc_buffer
// before any tensor is initialized (at the beginning of alloc_tensor_range).
// Hence, there is alway a buffer object in this vector. When each tensor is
// being initialized, this original buffer object will be released if both
// flattening and small allocation are enabled, and additional buffer
// objects will be created in init_tensor to represent flattened quantized
// weights.
std::vector<cl_mem> buffer;
// These are image1d_buffer_t objects that wrap around the quants and scales.
// For Q4_0 quantization, there should be two of them - one for quants and
// one for scales. They should be populated only when flattening and small
// allocation are enabled.
std::vector<cl_mem> img;
std::string name;
};
static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
delete ctx;
}
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
return cl_ptr_base;
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
ggml_cl2_init(buffer->buft->device);
if (tensor->view_src != nullptr) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
GGML_ASSERT(view_extra && "view_extra is nullptr?");
// Reuse extra of the parent tensor. The offset of this view tensor
// becomes `extra->offset + view_offs` and needs to be calculated when
// it is used. This changes is needed because of the change to
// ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
// `buffer` passed in here will always be `tensor->buffer`. It is OK
// to allocate extras from the same buffer context for ordinary
// intermediate tensors. But for views into kv cache tensors, doing so
// would mess up the extras used by kv cache.
// Before #7640, `buffer` is for intermediate tensors, which is always
// different from that of kv cache tensors.
//
// NB: now extra->offset no longer accounts for view_offs.
// NB: this should not apply to weight tensors (for end-to-end runs, but
// may apply for test-backend-ops).
// FIXME: if any unexpected results are seen, double check the offset -
// there could be other places that need fix.
tensor->extra = view_extra;
} else {
{
size_t offset = (char *)tensor->data - (char *)cl_ptr_base;
ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
extra->offset = offset;
extra->data_device = ctx->buffer[0];
extra->actual_size = ggml_nbytes(tensor);
tensor->extra = extra;
}
}
}
// The optimized gemm and gemv kernels are used for large matrices without batch.
// tensor is the quantized weights matrix.
inline bool use_adreno_kernels(const ggml_tensor *tensor) {
return tensor->ne[0] >= 512 && tensor->ne[1] >= 512 &&
tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
cl_context context = backend_ctx->context;
cl_command_queue queue = backend_ctx->queue;
#ifdef GGML_OPENCL_SOA_Q
// We separate the quantized bits and scale from block_q4_0 by using an
// additional kernel, where each thread handles a block. We first read the
// original weights into a temporary buffer, then create two separate
// buffers for quantized bits and scales, which are then populated by the
// conversion kernel.
if (tensor->type == GGML_TYPE_Q4_0) {
// Tensors should have been preallocated, therefore they should
// already have ggml_tensor_extra_cl as extra.
ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
// Allocate the new extra and create aliases from the original.
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
cl_int err;
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
ggml_nbytes(tensor), NULL, &err);
CL_CHECK(err);
CL_CHECK(clEnqueueWriteBuffer(
queue, data_device, CL_TRUE, 0,
ggml_nbytes(tensor), data, 0, NULL, NULL));
// We consider the specified offset arg as always, although For weights
// the offset arg should be 0 (we do not assert this).
//GGML_ASSERT(offset == 0);
// We create subbuffers from the original tensor buffer for scales and
// quants - i.e., scales and quants are aliases into the buffer obejct
// that backs the original tensor. This is a cleaner way to adapt to the
// new memory management.
// In the old code, we allocate new buffers for scales and quants
// respectively, which could still be done but would result in double
// allocation; properly deallocating the preallocated buffer that backs
// the tensors is tricky and would leak the backend specific information
// into the general backend code.
// Does this create misaligned subbuffers (alignment is 1024) in certain
// cases ?
cl_buffer_region region;
// The original tensor memory is divided into scales and quants, i.e.,
// we first store scales, then quants.
// Create subbuffer for scales.
region.origin = extra_orig->offset + tensor->view_offs + offset;
region.size = size_d;
extra->d = clCreateSubBuffer(
extra_orig->data_device, CL_MEM_READ_WRITE,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
// Create subbuffer for quants.
region.origin = extra_orig->offset + tensor->view_offs + offset + size_d;
region.size = size_q;
extra->q = clCreateSubBuffer(
extra_orig->data_device, CL_MEM_READ_WRITE,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
//cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
// The optimized kernels need weights in natural order, so unshuffle.
if (use_adreno_kernels(tensor)) {
kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
}
#else
cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
size_t local_work_size[] = {64, 1, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clReleaseMemObject(data_device));
tensor->extra = extra;
// transpose the weights and scales
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Only do transpose for large, non batched matrix
// TODO: use preallocated images instead of sub-buffer then image
if (use_adreno_kernels(tensor)) {
// <----------------------------------------------------------------------------------> //
// start transpose
// <----------------------------------------------------------------------------------> //
int M = tensor->ne[1]; // ne01
int K = tensor->ne[0]; // ne00
// transpose is out of place, so we need to allocate transposed buffers
// <----------------------------------------------------------------------------------> //
// use sub_buffer of max buffer size instead
size_t q_size_bytes = K * M / 8 * sizeof(float);
cl_buffer_region region;
region.origin = 0;
region.size = q_size_bytes;
cl_mem qT_d = clCreateSubBuffer(
backend_ctx->A_q_d_max,
0,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&err);
// cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
CL_CHECK(err);
// size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
size_t d_size_bytes = M * (K / 32) * 2;
region.origin = 0;
region.size = d_size_bytes;
cl_mem dT_d = clCreateSubBuffer(
backend_ctx->A_s_d_max,
0,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&err);
// cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
CL_CHECK(err);
// <----------------------------------------------------------------------------------> //
// create images from the buffers
// <----------------------------------------------------------------------------------> //
cl_mem q_d_image1D;
cl_mem d_d_image1D;
cl_mem qT_d_image1D;
cl_mem dT_d_image1D;
cl_image_format img_fmt_1d = { CL_RGBA, CL_FLOAT };
cl_image_desc img_desc_1d;
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 8 / 4;
img_desc_1d.buffer = extra->q;
q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
img_fmt_1d = { CL_RGBA, CL_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 8 / 4;
img_desc_1d.buffer = qT_d;
qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
img_fmt_1d = { CL_RGBA, CL_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 32 / 4 / 2;
img_desc_1d.buffer = extra->d;
d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
img_fmt_1d = { CL_RGBA, CL_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 32 / 4 / 2;
img_desc_1d.buffer = dT_d;
dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
// <----------------------------------------------------------------------------------> //
// set up and call the transpose kernels
// <----------------------------------------------------------------------------------> //
// weights
int height_q = M / 8;
int width_q = K / 8 / 4;
kernel = backend_ctx->kernel_transpose_16;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
size_t local_size_q[3] = {4, 16, 1};
size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
// scales
int height_s = M / 8;
int width_s = K / 32 / 8;
kernel = backend_ctx->kernel_transpose_16;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
size_t local_size_s[3] = {4, 16, 1};
size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
// <----------------------------------------------------------------------------------> //
// copy transposed buffer contents to original buffers
// <----------------------------------------------------------------------------------> //
// weights
CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
// scales
CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
// <----------------------------------------------------------------------------------> //
// deallocate transpose buffers
// <----------------------------------------------------------------------------------> //
CL_CHECK(clReleaseMemObject(qT_d));
CL_CHECK(clReleaseMemObject(dT_d));
// deallocate temporary images
CL_CHECK(clReleaseMemObject(q_d_image1D));
CL_CHECK(clReleaseMemObject(d_d_image1D));
CL_CHECK(clReleaseMemObject(qT_d_image1D));
CL_CHECK(clReleaseMemObject(dT_d_image1D));
// <----------------------------------------------------------------------------------> //
// end transpose
// <----------------------------------------------------------------------------------> //
}
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
return;
}
#endif // GGML_OPENCL_SOA_Q
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
GGML_ASSERT(extra);
CL_CHECK(clEnqueueWriteBuffer(
queue, extra->data_device, CL_TRUE, extra->offset + offset,
size, data, 0, NULL, NULL));
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor->extra);
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
cl_context context = backend_ctx->context;
cl_command_queue queue = backend_ctx->queue;
// Make sure all previously submitted commands are finished.
CL_CHECK(clFinish(queue));
#ifdef GGML_OPENCL_SOA_Q
// In end-to-end runs, get_tensor is usually used to get back the logits,
// where we can simply do clEnqueueReadBuffer since they are f32.
// However, in test-backend-ops, the GPU graph is copied to the CPU backend,
// which requires reading back quantized weight tensors.
// To properly support this, we need to restore block_q4_0 struct arrays
// from the flattened buffers.
if (tensor->type == GGML_TYPE_Q4_0) {
ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
cl_int err;
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
ggml_nbytes(tensor), NULL, &err);
CL_CHECK(err);
cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
size_t local_work_size[] = {1, 1, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clEnqueueReadBuffer(
queue, data_device, CL_TRUE, offset,
size, data, 0, NULL, NULL));
CL_CHECK(clReleaseMemObject(data_device));
return;
}
#endif // GGML_OPENCL_SOA_Q
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
CL_CHECK(clEnqueueReadBuffer(
queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
size, data, 0, NULL, NULL));
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_dev_t dev = buffer->buft->device;
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
cl_command_queue queue = backend_ctx->queue;
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
for (cl_mem buf : ctx->buffer) {
CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
}
CL_CHECK(clFinish(queue));
}
static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
ctx->reset();
}
static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
/* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
/* .get_base = */ ggml_backend_opencl_buffer_get_base,
/* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_opencl_buffer_clear,
/* .reset = */ ggml_backend_opencl_buffer_reset,
};
//
// buffer type
//
static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
return "OpenCL";
GGML_UNUSED(buffer_type);
}
static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
// clCreateBuffer returns -61 for size 0
size = std::max(size, (size_t)1);
cl_int err;
cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
if (err != CL_SUCCESS) {
GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
return nullptr;
}
ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
}
static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
// FIXME: not thread safe, device may not be initialized yet
static cl_uint alignment = -1;
if (alignment == (cl_uint)-1) {
ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
alignment = backend_ctx->alignment;
}
return alignment;
}
static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
static size_t max_size = -1;
if (max_size == (size_t)-1) {
ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
max_size = backend_ctx->max_alloc_size;
}
return max_size;
}
static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
return ggml_backend_is_opencl(backend);
UNUSED(buft);
}
static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
/* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
/* .get_alloc_size = */ NULL,
/* .is_host = */ NULL,
};
ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
static ggml_backend_buffer_type buffer_type = {
/* .iface = */ ggml_backend_opencl_buffer_type_interface,
/* .device = */ &g_ggml_backend_opencl_device,
/* .context = */ nullptr,
};
return &buffer_type;
}
//
// backend device
//
static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
return "GPUOpenCL";
GGML_UNUSED(dev);
}
static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
return dev_ctx->device_name.c_str();
}
static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
*free = 1;
*total = 1;
GGML_UNUSED(dev);
}
static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_GPU;
GGML_UNUSED(dev);
}
static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_opencl_device_get_name(dev);
props->description = ggml_backend_opencl_device_get_description(dev);
props->type = ggml_backend_opencl_device_get_type(dev);
ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = ggml_backend_dev_caps {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_opencl_guid(),
/* .interface = */ ggml_backend_opencl_i,
/* .device = */ dev,
/* .context = */ backend_ctx,
};
return backend;
GGML_UNUSED(params);
}
static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
return ggml_backend_opencl_buffer_type();
GGML_UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
GGML_UNUSED(dev);
GGML_UNUSED(ptr);
GGML_UNUSED(size);
GGML_UNUSED(max_tensor_size);
return nullptr;
}
static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
return ggml_opencl_supports_op(dev, op);
}
static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_opencl_buffer_type_get_name;
GGML_UNUSED(dev);
}
static struct ggml_backend_device_i ggml_backend_opencl_device_i = {
/* .get_name = */ ggml_backend_opencl_device_get_name,
/* .get_description = */ ggml_backend_opencl_device_get_description,
/* .get_memory = */ ggml_backend_opencl_device_get_memory,
/* .get_type = */ ggml_backend_opencl_device_get_type,
/* .get_props = */ ggml_backend_opencl_device_get_props,
/* .init_backend = */ ggml_backend_opencl_device_init,
/* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
/* .supports_op = */ ggml_backend_opencl_device_supports_op,
/* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
// Backend registry
static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
return "OpenCL";
GGML_UNUSED(reg);
}
static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
return ggml_backend_opencl_n_devices;
GGML_UNUSED(reg);
}
static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
return &g_ggml_backend_opencl_device;
GGML_UNUSED(reg);
GGML_UNUSED(index);
}
static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
/* .get_name = */ ggml_backend_opencl_reg_get_name,
/* .device_count = */ ggml_backend_opencl_reg_device_count,
/* .device_get = */ ggml_backend_opencl_reg_device_get,
/* .get_proc_address = */ NULL,
};
ggml_backend_reg_t ggml_backend_opencl_reg(void) {
// TODO: make this thread-safe somehow?
static ggml_backend_reg reg;
static bool initialized = false;
if (!initialized) {
reg = ggml_backend_reg {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_opencl_reg_i,
/* .context = */ NULL,
};
g_ggml_backend_opencl_device = ggml_backend_device {
/* .iface = */ ggml_backend_opencl_device_i,
/* .reg = */ &reg,
/* .context = */ &g_ggml_ctx_dev_main,
};
ggml_cl2_init(&g_ggml_backend_opencl_device);
initialized = true;
}
return &reg;
}
GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
//------------------------------------------------------------------------------
// Debugging utils
//------------------------------------------------------------------------------
#if 0
#define QK4_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
"wrong q4_0 block size/padding");
#include <math.h>
#ifdef __cplusplus
#include "half.hpp"
#endif
static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
void * buf = malloc(ggml_nbytes(tensor));
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
#ifdef GGML_OPENCL_SOA_Q
void * buf_q;
void * buf_d;
#endif
#ifdef GGML_USE_OPENCL
// Make sure everything is done.
CL_CHECK(clFinish(queue));
#ifdef GGML_OPENCL_SOA_Q
if (tensor->type == GGML_TYPE_Q4_0) {
ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
GGML_ASSERT(extra);
size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
buf_q = malloc(size_q);
buf_d = malloc(size_d);
CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
} else {
// Read out the tensor from GPU memory.
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
GGML_ASSERT(extra);
CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
}
#else
// Read out the tensor from GPU memory.
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
GGML_ASSERT(extra);
CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
#endif // GGML_OPENCL_SOA_Q
#endif // GGML_USE_OPENCL
// Open file and dump.
char fname[512];
sprintf(fname, "./tensor-dumps/%s.txt", tensor->name);
FILE * f = fopen(fname, "w");
if (!f) {
printf("Failed to open %s\n", fname);
return;
}
if (tensor->type == GGML_TYPE_F32) {
float * data = (float *) buf;
for (int i = 0; i < ggml_nelements(tensor); ++i) {
if (isnan(data[i])) {
printf("NaN found: %s\n", tensor->name);
break;
}
fprintf(f, "%f\n", data[i]);
}
} else if (tensor->type == GGML_TYPE_I32) {
int * data = (int *) buf;
for (int i = 0; i < ggml_nelements(tensor); ++i) {
if (isnan(data[i])) {
printf("NaN found: %s\n", tensor->name);
break;
}
fprintf(f, "%d\n", data[i]);
}
} else if (tensor->type == GGML_TYPE_F16) {
#ifdef __cplusplus
half_float::half * data = (half_float::half *) buf;
for (int i = 0; i < ggml_nelements(tensor); ++i) {
if (std::isnan(data[i])) {
printf("NaN found: %s\n", tensor->name);
break;
}
fprintf(f, "%f\n", float(data[i]));
}
#endif
} else if (tensor->type == GGML_TYPE_Q4_0) {
#ifdef GGML_OPENCL_SOA_Q
ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
unsigned char * data_q = (unsigned char *)buf_q;
for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
fprintf(f, "%04x, ", data_d[i]);
for (int k = 0; k < QK4_0/2; ++k) {
fprintf(f, "%02x, ", data_q[k]);
}
fprintf(f, "\n");
data_q += QK4_0/2;
}
free(buf_d);
free(buf_q);
#else
block_q4_0 * data = (block_q4_0 *) buf;
for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
fprintf(f, "%04x, ", data[i].d);
for (int k = 0; k < QK4_0/2; ++k) {
fprintf(f, "%02x, ", data[i].qs[k]);
}
fprintf(f, "\n");
}
#endif // GGML_OPENCL_SOA_Q
}
free(buf);
fflush(f);
fclose(f);
}
#else
#define dump_tensor(tensor)
#endif
//------------------------------------------------------------------------------
// Profiling utility
//------------------------------------------------------------------------------
#ifdef GGML_OPENCL_PROFILING
void populateProfilingInfo(
ProfilingInfo& info, cl_event evt, cl_kernel kernel,
size_t global_size[3], size_t local_size[3],
const ggml_tensor * tensor) {
cl_ulong start;
cl_ulong end;
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clGetEventProfilingInfo(
evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL));
CL_CHECK(clGetEventProfilingInfo(
evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL));
char kernel_name[512];
CL_CHECK(clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME,
sizeof(kernel_name), kernel_name, NULL));
info.duration_ns = end - start;
info.op_name = tensor->name;
info.kernel_name = kernel_name;
info.local_size[0] = local_size[0];
info.local_size[1] = local_size[1];
info.local_size[2] = local_size[2];
info.global_size[0] = global_size[0];
info.global_size[1] = global_size[1];
info.global_size[2] = global_size[2];
info.output_size[0] = tensor->ne[0];
info.output_size[1] = tensor->ne[1];
info.output_size[2] = tensor->ne[2];
info.output_size[3] = tensor->ne[3];
}
#endif
//------------------------------------------------------------------------------
// Ops
//------------------------------------------------------------------------------
static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
}
static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
UNUSED(backend);
UNUSED(src0);
UNUSED(src1);
UNUSED(dst);
}
static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const int ne00 = src0 ? src0->ne[0] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
const int ne10 = src1 ? src1->ne[0] : 0;
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
const int ne11 = src1 ? src1->ne[1] : 0;
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
const cl_ulong nb1 = dst ? dst->nb[1] : 0;
const cl_ulong nb2 = dst ? dst->nb[2] : 0;
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_get_rows_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_get_rows_f16;
break;
case GGML_TYPE_Q4_0:
kernel = backend_ctx->kernel_get_rows_q4_0;
break;
default:
GGML_ASSERT(false && "not implemented");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
size_t local_work_size[] = {1, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const int ne00 = src0 ? src0->ne[0] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
const int ne03 = src0 ? src0->ne[3] : 0;
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
const int ne10 = src1 ? src1->ne[0] : 0;
const int ne11 = src1 ? src1->ne[1] : 0;
const int ne12 = src1 ? src1->ne[2] : 0;
const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
const int ne0 = dst ? dst->ne[0] : 0;
const int ne1 = dst ? dst->ne[1] : 0;
const int ne2 = dst ? dst->ne[2] : 0;
const int ne3 = dst ? dst->ne[3] : 0;
const cl_ulong nb0 = dst ? dst->nb[0] : 0;
const cl_ulong nb1 = dst ? dst->nb[1] : 0;
const cl_ulong nb2 = dst ? dst->nb[2] : 0;
const cl_ulong nb3 = dst ? dst->nb[3] : 0;
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
bool bcast_row = false;
cl_kernel kernel;
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(src0));
// src1 is a row
GGML_ASSERT(ne11 == 1);
bcast_row = true;
int ne = ne00 / 4;
kernel = backend_ctx->kernel_add_row;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
} else {
kernel = backend_ctx->kernel_add;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
}
if (bcast_row) {
int n = ggml_nelements(dst)/4;
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
} else {
unsigned int nth = MIN(64, ne0);
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {nth, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
}
static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const int ne00 = src0 ? src0->ne[0] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
const int ne03 = src0 ? src0->ne[3] : 0;
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
const int ne10 = src1 ? src1->ne[0] : 0;
const int ne11 = src1 ? src1->ne[1] : 0;
const int ne12 = src1 ? src1->ne[2] : 0;
const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
const int ne0 = dst ? dst->ne[0] : 0;
const int ne1 = dst ? dst->ne[1] : 0;
const int ne2 = dst ? dst->ne[2] : 0;
const int ne3 = dst ? dst->ne[3] : 0;
const cl_ulong nb0 = dst ? dst->nb[0] : 0;
const cl_ulong nb1 = dst ? dst->nb[1] : 0;
const cl_ulong nb2 = dst ? dst->nb[2] : 0;
const cl_ulong nb3 = dst ? dst->nb[3] : 0;
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
bool bcast_row = false;
cl_kernel kernel;
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(src0));
// src1 is a row
GGML_ASSERT(ne11 == 1);
bcast_row = true;
int ne = ne00 / 4;
kernel = backend_ctx->kernel_mul_row;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
} else {
kernel = backend_ctx->kernel_mul;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
}
if (bcast_row) {
int n = ggml_nelements(dst)/4;
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
} else {
unsigned int nth = MIN(64, ne0);
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {nth, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
}
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
int n = ggml_nelements(dst);
if (n % 4 == 0) {
kernel = backend_ctx->kernel_gelu_4;
n /= 4;
} else {
kernel = backend_ctx->kernel_gelu;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
#endif
}
static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
int n = ggml_nelements(dst);
if (n % 4 == 0) {
kernel = backend_ctx->kernel_silu_4;
n /= 4;
} else {
kernel = backend_ctx->kernel_silu;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel = backend_ctx->kernel_relu;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
const int64_t n = ggml_nelements(dst);
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
float min;
float max;
memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
cl_kernel kernel = backend_ctx->kernel_clamp;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
const int64_t n = ggml_nelements(dst);
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
const int ne00 = src0 ? src0->ne[0] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
GGML_ASSERT(ggml_is_contiguous_1(src0));
const int nth = MIN(64, ne00);
cl_kernel kernel = backend_ctx->kernel_norm;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth, NULL));
const int64_t nrows = ggml_nrows(src0);
size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
size_t local_work_size[] = {(size_t)nth, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_backend_opencl_device_context * dev_ctx =
(ggml_backend_opencl_device_context *)backend->device->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
const int ne00 = src0 ? src0->ne[0] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous_1(src0));
const int nth = MIN(64, ne00);
const int64_t nrows = ggml_nrows(src0);
size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
size_t local_work_size[] = {(size_t)nth, 1, 1};
cl_kernel kernel = backend_ctx->kernel_rms_norm;
// Note, this kernel declares local memory in kernel args and the size
// depends on subgroup size.
// Retrieve subgroup size.
// Note, this requires OpenCL 2.1 and above
size_t sgs;
CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
sizeof(local_work_size), local_work_size,
sizeof(size_t), &sgs, NULL));
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
// This is local memory - the size depends on subgroup size.
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth/sgs, NULL));
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
#ifdef GGML_OPENCL_SOA_Q
ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
#endif
const int ne00 = src0 ? src0->ne[0] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
const int ne03 = src0 ? src0->ne[3] : 0;
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
const int ne10 = src1 ? src1->ne[0] : 0;
const int ne11 = src1 ? src1->ne[1] : 0;
const int ne12 = src1 ? src1->ne[2] : 0;
const int ne13 = src1 ? src1->ne[3] : 0;
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
const int ne0 = dst ? dst->ne[0] : 0;
const int ne1 = dst ? dst->ne[1] : 0;
int r2 = ne12/ne02;
int r3 = ne13/ne03;
GGML_ASSERT(ne00 == ne10);
int nth0 = 32;
int nth1 = 1;
int nrows = 1;
// The number of values produced by each subgroup
int ndst = 4;
cl_kernel kernel;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
cl_context context = backend_ctx->context;
if (ne01 && ne1 && use_adreno_kernels(src0)) {
// init CL objects
// <--------------------------------------------> //
cl_int status;
cl_image_format img_fmt_1d;
cl_image_desc img_desc_1d;
cl_buffer_region region;
cl_mem A_image1d = nullptr;
cl_mem B_image1d = nullptr;
cl_mem B_sub_buffer = nullptr;
cl_mem C_d = nullptr;
// for B transpose
cl_mem B_d = nullptr;
cl_mem B_d_input_image = nullptr;
// <--------------------------------------------> //
// define matrix dimensions
// <--------------------------------------------> //
int M = ne01;
int N = ne1;
int K = ne00;
int padding;
// <--------------------------------------------> //
// q4_0 x fp32
if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
// TODO: remove duplicate definitions of image description + format -- move to top
// create an image for A
// <--------------------------------------------> //
if (N == 1) {
img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
} else {
img_fmt_1d = { CL_R, CL_FLOAT};
}
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
img_desc_1d.buffer = extra0_q4_0->q;
A_image1d = clCreateImage(
context,
CL_MEM_READ_ONLY,
&img_fmt_1d,
&img_desc_1d,
NULL,
&status);
CL_CHECK(status);
// <--------------------------------------------> //
// create a sub_buffer for B
// <--------------------------------------------> //
region.origin = (extra1->offset);
region.size = K * N * sizeof(float);
B_sub_buffer = clCreateSubBuffer(
extra1->data_device,
0,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&status);
CL_CHECK(status);
// <--------------------------------------------> //
// transpose activation for Skyler's gemm
if (N != 1) {
//how many extra elements beyond multiple of 8
int extra_elements = N % 8;
//how much padding to add
padding = 0;
if (extra_elements > 0){
padding = 8 - extra_elements;
}
// Specify the starting offset (in bytes)
region.origin = 0;
// Specify the size of the sub-buffer (divide by 2 for FP16)
region.size = K * (N + padding) * sizeof(float)/2;
B_d = clCreateSubBuffer(
backend_ctx->B_d_max,
0,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&status);
CL_CHECK(status);
cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
cl_image_desc image_desc_B_d_input = {
CL_MEM_OBJECT_IMAGE1D_BUFFER,
static_cast<size_t>(K * N / 4),
0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
};
B_d_input_image = clCreateImage(
context,
0,
&image_format_B_d_input,
&image_desc_B_d_input,
NULL,
&status);
CL_CHECK(status);
cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
cl_image_desc image_desc_B_d_output = {
CL_MEM_OBJECT_IMAGE1D_BUFFER,
static_cast<size_t>(K * (N + padding)/4),
0, 0, 0, 0, 0, 0, 0, { B_d }
};
B_image1d = clCreateImage(
context,
0,
&image_format_B_d_output,
&image_desc_B_d_output,
NULL,
&status);
CL_CHECK(status);
int height_B = N/4;
int width_B = K/4;
int padded_height_B = (N + padding)/4;
kernel = backend_ctx->kernel_transpose_32_16;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
size_t local_size_t[2] = { 1, 16 };
//WGS tuning
if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
local_size_t[0]=4;
local_size_t[1]=8;
} else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
local_size_t[0]=2;
local_size_t[1]=8;
} else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
local_size_t[0]=1;
local_size_t[1]=8;
} else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
local_size_t[0]=2;
local_size_t[1]=8;
}
size_t global_size_t[2] = {
static_cast<size_t>(width_B),
static_cast<size_t>(padded_height_B)
};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_size_t, local_size_t, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, NULL));
#endif
} else {
// no need to transpose B in other cases
// create an image for B from sub_buffer
// <--------------------------------------------> //
img_fmt_1d = {CL_RGBA, CL_FLOAT};
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_width = K * N / 4;
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.buffer = B_sub_buffer;
B_image1d = clCreateImage(
context,
CL_MEM_READ_ONLY,
&img_fmt_1d,
&img_desc_1d,
NULL,
&status);
CL_CHECK(status);
// <--------------------------------------------> //
}
// choose gemm or gemv kernel
// <--------------------------------------------> //
if (N == 1) {
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
if (M == 4096 && K == 4096) {
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
} else if (M == 4096 && K == 11008) {
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
} else if (M == 11008 && K == 4096) {
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
} else if (M == 32000 && K == 4096) {
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
}
} else {
kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
}
// <--------------------------------------------> //
// set kernel args
// <--------------------------------------------> //
cl_uint k_arg = 0;
if (N == 1) {
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
} else {
region.origin = extrad->offset; // Specify the starting offset (in bytes)
region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
CL_CHECK(status);
int padded_N = ne1 + padding;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
}
// <--------------------------------------------> //
// choose workgroup size
// <--------------------------------------------> //
size_t global_work_size[3] = {
64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
size_t local_work_size[3] = {64, 2, 4};
global_work_size[0] = (size_t)(ceil((float)ne1/8));
global_work_size[1] = (size_t)(ne01/4);
global_work_size[2] = (size_t)(1);
local_work_size[0] = (size_t)(1); //4x32 for FP32
local_work_size[1] = (size_t)(128);
local_work_size[2] = (size_t)(1);
//WGS tuning
if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
local_work_size[0] = 1;
local_work_size[1] = 128;
} else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
local_work_size[0] = 2;
local_work_size[1] = 64;
} else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
local_work_size[0] = 2;
local_work_size[1] = 64;
} else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
local_work_size[0] = 2;
local_work_size[1] = 64;
}
if (N == 1) {
local_work_size[0] = backend_ctx->adreno_wave_size; // localsize
local_work_size[1] = 4; // reduce factor
local_work_size[2] = 1;
global_work_size[0] = M / 2;
global_work_size[1] = 4; // reduce factor
global_work_size[2] = 1;
}
// <--------------------------------------------> //
// enqueue kernel with profiling
// <--------------------------------------------> //
#ifdef GGML_OPENCL_PROFILING
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
// enqueue kernel without profiling
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
// <--------------------------------------------> //
// deallocate sub buffers and images
// <--------------------------------------------> //
CL_CHECK(clReleaseMemObject(A_image1d));
CL_CHECK(clReleaseMemObject(B_sub_buffer));
CL_CHECK(clReleaseMemObject(B_image1d));
if (N != 1) {
CL_CHECK(clReleaseMemObject(B_d));
CL_CHECK(clReleaseMemObject(B_d_input_image));
CL_CHECK(clReleaseMemObject(C_d));
}
// <--------------------------------------------> //
return;
}
} // if (ne01 && ne1)
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
if (!ggml_is_transposed(src0) &&
!ggml_is_transposed(src1) &&
src1t == GGML_TYPE_F32 &&
ne00%32 == 0 &&
ne11 > 2) {
#ifdef GGML_OPENCL_SOA_Q
// Set up kernel.
switch(src0t) {
case GGML_TYPE_Q4_0:
// This should have been satisfied.
GGML_ASSERT(ne11 == ne1);
GGML_ASSERT(ne01 == ne0);
if (backend_ctx->gpu_family == INTEL) {
nth0 = 16;
nth1 = 1;
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 1;
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
break;
default:
break;
}
// Launch kernel.
if (src0t == GGML_TYPE_Q4_0) {
size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
if (backend_ctx->gpu_family == INTEL) {
// Set global size for Intel. It uses 16x output values.
global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
global_work_size[1] = (size_t)ne11*nth1;
global_work_size[2] = (size_t)ne12*ne13;
}
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
return;
}
#else // GGML_OPENCL_SOA_Q
// TODO: add block_q4_0 variant.
#endif // GGML_OPENCL_SOA_Q
}
// use custom matrix x vector kernel
switch (src0t) {
case GGML_TYPE_F32:
//GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(src1t == GGML_TYPE_F32);
kernel = backend_ctx->kernel_mul_mat_f32_f32;
nrows = 4;
if (backend_ctx->gpu_family == INTEL) {
nth0 = 32;
nth1 = 1;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 1;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
break;
case GGML_TYPE_F16:
//GGML_ASSERT(ne02 == ne12);
if (backend_ctx->gpu_family == INTEL) {
nth0 = 32;
nth1 = 1;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 1;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
if (src1t == GGML_TYPE_F32) {
if (ne11 * ne12 < 4) {
kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
nrows = ne11;
} else {
kernel = backend_ctx->kernel_mul_mat_f16_f32;
nrows = 4;
}
} else {
kernel = backend_ctx->kernel_mul_mat_f16_f16;
nrows = 4;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
break;
case GGML_TYPE_Q4_0:
// This should have been satisfied.
GGML_ASSERT(ne11 == ne1);
GGML_ASSERT(ne01 == ne0);
#ifdef GGML_OPENCL_SOA_Q
if (backend_ctx->gpu_family == INTEL) {
nth0 = 16;
nth1 = 1;
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
ndst = 8;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 1;
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
ndst =8;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
#else // GGML_OPENCL_SOA_Q
if (backend_ctx->gpu_family == INTEL) {
// Use 1D local size. Each workgroup is a SIMD group. Each SIMD
// group produces N_DST (4 for Q4_0 kernel) values in the result.
// The number of workgroups on dim 0 (the leading dimension) is
// the nearest multiple of 4 that covers ne0 (equals ne01).
nth0 = 16;
nth1 = 1;
kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
ndst = 4;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 1;
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
ndst = 4;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
#endif // GGML_OPENCL_SOA_Q
break;
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
if (backend_ctx->gpu_family == INTEL) {
nth0 = 2;
nth1 = 16;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 2;
nth1 = 64;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
break;
default:
GGML_ASSERT(false && "not implemented");
}
if (src0t == GGML_TYPE_Q4_0 ||
src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) {
// Each SIMD group produces N_DST values in the result. Assuming each
// workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
// produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
// (number of workgroups) will be a nearest multiple of
// N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
// N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
} else if (src0t == GGML_TYPE_Q4_K) {
GGML_ASSERT(false && "not implemented");
} else if (src0t == GGML_TYPE_Q3_K) {
GGML_ASSERT(false && "not implemented");
} else if (src0t == GGML_TYPE_Q5_K) {
GGML_ASSERT(false && "not implemented");
} else if (src0t == GGML_TYPE_Q6_K) {
size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
} else {
int64_t ny = (ne11 + nrows - 1)/nrows;
size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
}
static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_UNUSED(src1);
GGML_ASSERT(ggml_is_contiguous(src0));
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
float scale;
memcpy(&scale, dst->op_params, sizeof(scale));
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel = backend_ctx->kernel_scale;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
int n = ggml_nelements(dst)/4;
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
// GGML_OP_CPY happens between src0 and src1.
// GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
UNUSED(dst);
const int ne00 = src0 ? src0->ne[0] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
const int ne03 = src0 ? src0->ne[3] : 0;
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
const int ne10 = src1 ? src1->ne[0] : 0;
const int ne11 = src1 ? src1->ne[1] : 0;
const int ne12 = src1 ? src1->ne[2] : 0;
const int ne13 = src1 ? src1->ne[3] : 0;
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_kernel kernel;
switch (src0t) {
case GGML_TYPE_F32:
switch (src1t) {
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_cpy_f32_f16;
break;
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_cpy_f32_f32;
break;
default:
GGML_ASSERT(false && "not implemented");
}
break;
case GGML_TYPE_F16:
switch (src1t) {
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_cpy_f16_f16;
break;
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_cpy_f16_f32;
break;
default:
GGML_ASSERT(false && "not implemented");
}
break;
default:
GGML_ASSERT(false && "not implemented");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
const int nth = MIN(64, ne00);
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, src1);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cl_cpy(backend, src0, dst, nullptr);
UNUSED(src1);
}
static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
int n_past = ((int32_t *)(dst->op_params))[0];
const int ne00 = src0 ? src0->ne[0] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
if (ne00%8 == 0) {
kernel = backend_ctx->kernel_diag_mask_inf_8;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
} else {
kernel = backend_ctx->kernel_diag_mask_inf;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
}
static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
// Softmax can now fuse KQ mask and KQ scale, which used to be two additional
// ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
// alibi is not used; however, for some other models, it is used.
// KQ_mask
if (src1) {
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
}
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
const int ne00 = src0 ? src0->ne[0] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
const int ne03 = src0 ? src0->ne[3] : 0;
float scale, max_bias;
memcpy(&scale, dst->op_params + 0, sizeof(float));
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
const int nrows_x = ggml_nrows(src0);
const int nrows_y = src0->ne[1];
const int n_head = nrows_x/nrows_y;
const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
// Local size must be wave size. Each workgroup is a wave, working on a row,
// where a row corresponds to leading dimension.
int nth = MIN(32, ne00);
if (backend_ctx->gpu_family == INTEL) {
// This is the same as the initial value.
nth = MIN(32, ne00);
}
else if (backend_ctx->gpu_family == ADRENO) {
nth = 64;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
cl_kernel kernel;
if (ne00%4 == 0) {
kernel = backend_ctx->kernel_soft_max_4;
} else {
kernel = backend_ctx->kernel_soft_max;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(float), &scale));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &max_bias));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &m0));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &m1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &n_head_log2));
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
ggml_tensor * src2 = dst->src[2];
ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
const int ne00 = src0 ? src0->ne[0] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
const int ne03 = src0 ? src0->ne[3] : 0;
const int nb00 = src0 ? src0->nb[0] : 0;
const int nb01 = src0 ? src0->nb[1] : 0;
const int nb02 = src0 ? src0->nb[2] : 0;
const int nb03 = src0 ? src0->nb[3] : 0;
const int ne10 = src1 ? src1->ne[0] : 0;
const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
const int ne0 = dst ? dst->ne[0] : 0;
const int ne1 = dst ? dst->ne[1] : 0;
const int ne2 = dst ? dst->ne[2] : 0;
const int ne3 = dst ? dst->ne[3] : 0;
const int nb0 = dst ? dst->nb[0] : 0;
const int nb1 = dst ? dst->nb[1] : 0;
const int nb2 = dst ? dst->nb[2] : 0;
const int nb3 = dst ? dst->nb[3] : 0;
GGML_ASSERT(ne10 == ne02);
int nth = MIN(64, ne00);
const int n_past = ((int *) dst->op_params)[0];
const int n_dims = ((int *) dst->op_params)[1];
const int mode = ((int *) dst->op_params)[2];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
float freq_base;
float freq_scale;
float ext_factor;
float attn_factor;
float beta_fast;
float beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
const bool is_neox = mode & 2;
cl_kernel kernel;
if (!is_neox) {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_norm_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_norm_f16;
break;
default:
GGML_ASSERT(false);
};
} else {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_neox_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_neox_f16;
break;
default:
GGML_ASSERT(false);
};
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
//------------------------------------------------------------------------------
// Op offloading
//------------------------------------------------------------------------------
typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
ggml_cl_func_t func = nullptr;
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
const bool any_on_device = tensor->extra
|| (src0 != nullptr && src0->extra)
|| (src1 != nullptr && src1->extra);
switch (tensor->op) {
case GGML_OP_GET_ROWS:
if (!any_on_device) {
return false;
}
func = ggml_cl_get_rows;
break;
case GGML_OP_CPY:
if (!any_on_device) {
return false;
}
func = ggml_cl_cpy;
break;
case GGML_OP_DUP:
case GGML_OP_CONT:
if (!any_on_device) {
return false;
}
func = ggml_cl_dup;
break;
case GGML_OP_ADD:
if (!any_on_device) {
return false;
}
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
func = ggml_cl_add;
break;
case GGML_OP_MUL:
if (!any_on_device) {
return false;
}
func = ggml_cl_mul;
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
if (!any_on_device) {
return false;
}
func = ggml_cl_gelu;
break;
case GGML_UNARY_OP_SILU:
if (!any_on_device) {
return false;
}
func = ggml_cl_silu;
break;
case GGML_UNARY_OP_RELU:
if (!any_on_device) {
return false;
}
func = ggml_cl_relu;
break;
default:
return false;
} break;
case GGML_OP_CLAMP:
if (!any_on_device) {
return false;
}
func = ggml_cl_clamp;
break;
case GGML_OP_NORM:
if (!any_on_device) {
return false;
}
func = ggml_cl_norm;
break;
case GGML_OP_RMS_NORM:
if (!any_on_device) {
return false;
}
func = ggml_cl_rms_norm;
break;
case GGML_OP_MUL_MAT:
if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
return false;
}
func = ggml_cl_mul_mat;
break;
case GGML_OP_SCALE:
if (!any_on_device) {
return false;
}
func = ggml_cl_scale;
break;
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
if (!any_on_device) {
return false;
}
func = ggml_cl_nop;
break;
case GGML_OP_DIAG_MASK_INF:
if (!any_on_device) {
return false;
}
func = ggml_cl_diag_mask_inf;
break;
case GGML_OP_SOFT_MAX:
if (!any_on_device) {
return false;
}
func = ggml_cl_soft_max;
break;
case GGML_OP_ROPE:
if (!any_on_device) {
return false;
}
func = ggml_cl_rope;
break;
default:
return false;
}
func(backend, tensor->src[0], tensor->src[1], tensor);
return true;
}