|
#include "ggml.h" |
|
#include "ggml-backend.h" |
|
#include "ggml-impl.h" |
|
#include "gguf.h" |
|
|
|
#include <cinttypes> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <map> |
|
#include <new> |
|
#include <stdexcept> |
|
#include <string> |
|
#include <vector> |
|
|
|
template <typename T> |
|
struct type_to_gguf_type; |
|
|
|
template <> |
|
struct type_to_gguf_type<uint8_t> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_UINT8; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<int8_t> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_INT8; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<uint16_t> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_UINT16; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<int16_t> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_INT16; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<uint32_t> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_UINT32; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<int32_t> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_INT32; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<float> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<bool> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_BOOL; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<std::string> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_STRING; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<uint64_t> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_UINT64; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<int64_t> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_INT64; |
|
}; |
|
|
|
template <> |
|
struct type_to_gguf_type<double> { |
|
static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64; |
|
}; |
|
|
|
static const std::map<gguf_type, size_t> GGUF_TYPE_SIZE = { |
|
{GGUF_TYPE_UINT8, sizeof(uint8_t)}, |
|
{GGUF_TYPE_INT8, sizeof(int8_t)}, |
|
{GGUF_TYPE_UINT16, sizeof(uint16_t)}, |
|
{GGUF_TYPE_INT16, sizeof(int16_t)}, |
|
{GGUF_TYPE_UINT32, sizeof(uint32_t)}, |
|
{GGUF_TYPE_INT32, sizeof(int32_t)}, |
|
{GGUF_TYPE_FLOAT32, sizeof(float)}, |
|
{GGUF_TYPE_BOOL, sizeof(int8_t)}, |
|
{GGUF_TYPE_STRING, 0}, |
|
{GGUF_TYPE_ARRAY, 0}, |
|
{GGUF_TYPE_UINT64, sizeof(uint64_t)}, |
|
{GGUF_TYPE_INT64, sizeof(int64_t)}, |
|
{GGUF_TYPE_FLOAT64, sizeof(double)}, |
|
}; |
|
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); |
|
|
|
static const std::map<gguf_type, const char *> GGUF_TYPE_NAME = { |
|
{GGUF_TYPE_UINT8, "u8"}, |
|
{GGUF_TYPE_INT8, "i8"}, |
|
{GGUF_TYPE_UINT16, "u16"}, |
|
{GGUF_TYPE_INT16, "i16"}, |
|
{GGUF_TYPE_UINT32, "u32"}, |
|
{GGUF_TYPE_INT32, "i32"}, |
|
{GGUF_TYPE_FLOAT32, "f32"}, |
|
{GGUF_TYPE_BOOL, "bool"}, |
|
{GGUF_TYPE_STRING, "str"}, |
|
{GGUF_TYPE_ARRAY, "arr"}, |
|
{GGUF_TYPE_UINT64, "u64"}, |
|
{GGUF_TYPE_INT64, "i64"}, |
|
{GGUF_TYPE_FLOAT64, "f64"}, |
|
}; |
|
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); |
|
|
|
size_t gguf_type_size(enum gguf_type type) { |
|
auto it = GGUF_TYPE_SIZE.find(type); |
|
return it == GGUF_TYPE_SIZE.end() ? 0 : it->second; |
|
} |
|
|
|
struct gguf_kv { |
|
std::string key; |
|
|
|
bool is_array; |
|
enum gguf_type type; |
|
|
|
std::vector<int8_t> data; |
|
std::vector<std::string> data_string; |
|
|
|
template <typename T> |
|
gguf_kv(const std::string & key, const T value) |
|
: key(key), is_array(false), type(type_to_gguf_type<T>::value) { |
|
GGML_ASSERT(!key.empty()); |
|
data.resize(sizeof(T)); |
|
memcpy(data.data(), &value, sizeof(T)); |
|
} |
|
|
|
template <typename T> |
|
gguf_kv(const std::string & key, const std::vector<T> & value) |
|
: key(key), is_array(true), type(type_to_gguf_type<T>::value) { |
|
GGML_ASSERT(!key.empty()); |
|
data.resize(value.size()*sizeof(T)); |
|
for (size_t i = 0; i < value.size(); ++i) { |
|
const T tmp = value[i]; |
|
memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T)); |
|
} |
|
} |
|
|
|
gguf_kv(const std::string & key, const std::string & value) |
|
: key(key), is_array(false), type(GGUF_TYPE_STRING) { |
|
GGML_ASSERT(!key.empty()); |
|
data_string.push_back(value); |
|
} |
|
|
|
gguf_kv(const std::string & key, const std::vector<std::string> & value) |
|
: key(key), is_array(true), type(GGUF_TYPE_STRING) { |
|
GGML_ASSERT(!key.empty()); |
|
data_string = value; |
|
} |
|
|
|
const std::string & get_key() const { |
|
return key; |
|
} |
|
|
|
const enum gguf_type & get_type() const { |
|
return type; |
|
} |
|
|
|
size_t get_ne() const { |
|
if (type == GGUF_TYPE_STRING) { |
|
const size_t ne = data_string.size(); |
|
GGML_ASSERT(is_array || ne == 1); |
|
return ne; |
|
} |
|
const size_t type_size = gguf_type_size(type); |
|
GGML_ASSERT(data.size() % type_size == 0); |
|
const size_t ne = data.size() / type_size; |
|
GGML_ASSERT(is_array || ne == 1); |
|
return ne; |
|
} |
|
|
|
template <typename T> |
|
const T & get_val(const size_t i = 0) const { |
|
GGML_ASSERT(type_to_gguf_type<T>::value == type); |
|
if constexpr (std::is_same<T, std::string>::value) { |
|
GGML_ASSERT(data_string.size() >= i+1); |
|
return data_string[i]; |
|
} |
|
const size_t type_size = gguf_type_size(type); |
|
GGML_ASSERT(data.size() % type_size == 0); |
|
GGML_ASSERT(data.size() >= (i+1)*type_size); |
|
return reinterpret_cast<const T *>(data.data())[i]; |
|
} |
|
|
|
void cast(const enum gguf_type new_type) { |
|
const size_t new_type_size = gguf_type_size(new_type); |
|
GGML_ASSERT(data.size() % new_type_size == 0); |
|
type = new_type; |
|
} |
|
}; |
|
|
|
struct gguf_tensor_info { |
|
struct ggml_tensor t; |
|
uint64_t offset; |
|
}; |
|
|
|
struct gguf_context { |
|
uint32_t version = GGUF_VERSION; |
|
|
|
std::vector<struct gguf_kv> kv; |
|
std::vector<struct gguf_tensor_info> info; |
|
|
|
size_t alignment = GGUF_DEFAULT_ALIGNMENT; |
|
size_t offset = 0; |
|
size_t size = 0; |
|
|
|
void * data = nullptr; |
|
}; |
|
|
|
struct gguf_reader { |
|
FILE * file; |
|
|
|
gguf_reader(FILE * file) : file(file) {} |
|
|
|
template <typename T> |
|
bool read(T & dst) const { |
|
return fread(&dst, 1, sizeof(dst), file) == sizeof(dst); |
|
} |
|
|
|
template <typename T> |
|
bool read(std::vector<T> & dst, const size_t n) const { |
|
dst.resize(n); |
|
for (size_t i = 0; i < dst.size(); ++i) { |
|
if constexpr (std::is_same<T, bool>::value) { |
|
bool tmp; |
|
if (!read(tmp)) { |
|
return false; |
|
} |
|
dst[i] = tmp; |
|
} else { |
|
if (!read(dst[i])) { |
|
return false; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
bool read(bool & dst) const { |
|
int8_t tmp = -1; |
|
if (!read(tmp)) { |
|
return false; |
|
} |
|
dst = tmp != 0; |
|
return true; |
|
} |
|
|
|
bool read(enum ggml_type & dst) const { |
|
int32_t tmp = -1; |
|
if (!read(tmp)) { |
|
return false; |
|
} |
|
dst = ggml_type(tmp); |
|
return true; |
|
} |
|
|
|
bool read(enum gguf_type & dst) const { |
|
int32_t tmp = -1; |
|
if (!read(tmp)) { |
|
return false; |
|
} |
|
dst = gguf_type(tmp); |
|
return true; |
|
} |
|
|
|
bool read(std::string & dst) const { |
|
uint64_t size = -1; |
|
if (!read(size)) { |
|
return false; |
|
} |
|
dst.resize(size); |
|
return fread(dst.data(), 1, dst.length(), file) == dst.length(); |
|
} |
|
|
|
bool read(void * dst, const size_t size) const { |
|
return fread(dst, 1, size, file) == size; |
|
} |
|
}; |
|
|
|
struct gguf_context * gguf_init_empty(void) { |
|
return new gguf_context; |
|
} |
|
|
|
template<typename T> |
|
bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) { |
|
if (is_array) { |
|
std::vector<T> value; |
|
try { |
|
if (!gr.read(value, n)) { |
|
return false; |
|
} |
|
} catch (std::length_error &) { |
|
fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str()); |
|
return false; |
|
} catch (std::bad_alloc &) { |
|
fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str()); |
|
return false; |
|
} |
|
kv.emplace_back(key, value); |
|
} else { |
|
T value; |
|
if (!gr.read(value)) { |
|
return false; |
|
} |
|
kv.emplace_back(key, value); |
|
} |
|
return true; |
|
} |
|
|
|
struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { |
|
const struct gguf_reader gr(file); |
|
struct gguf_context * ctx = new gguf_context; |
|
|
|
bool ok = true; |
|
|
|
|
|
{ |
|
std::vector<char> magic; |
|
ok = ok && gr.read(magic, 4); |
|
|
|
if (!ok) { |
|
fprintf(stderr, "%s: failed to read magic\n", __func__); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
for (uint32_t i = 0; i < magic.size(); i++) { |
|
if (magic[i] != GGUF_MAGIC[i]) { |
|
fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
} |
|
} |
|
|
|
|
|
int64_t n_kv = 0; |
|
int64_t n_tensors = 0; |
|
|
|
if (ok && gr.read(ctx->version)) { |
|
if (ctx->version == 1) { |
|
fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__); |
|
ok = false; |
|
} |
|
if (ctx->version > GGUF_VERSION) { |
|
fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n", |
|
__func__, ctx->version, GGUF_VERSION); |
|
ok = false; |
|
} |
|
} else { |
|
ok = false; |
|
} |
|
|
|
if (ok && gr.read(n_tensors)) { |
|
static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); |
|
if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) { |
|
fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n", |
|
__func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info)); |
|
ok = false; |
|
} |
|
} else { |
|
ok = false; |
|
} |
|
|
|
if (ok && gr.read(n_kv)) { |
|
static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); |
|
if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) { |
|
fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n", |
|
__func__, n_kv, SIZE_MAX/sizeof(gguf_kv)); |
|
ok = false; |
|
} |
|
} else { |
|
ok = false; |
|
} |
|
|
|
if (!ok) { |
|
fprintf(stderr, "%s: failed to read header\n", __func__); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
|
|
{ |
|
for (int64_t i = 0; ok && i < n_kv; ++i) { |
|
std::string key; |
|
gguf_type type = gguf_type(-1); |
|
bool is_array = false; |
|
uint64_t n = 1; |
|
|
|
try { |
|
ok = ok && gr.read(key); |
|
} catch (std::length_error &) { |
|
fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i); |
|
ok = false; |
|
} catch (std::bad_alloc &) { |
|
fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i); |
|
ok = false; |
|
} |
|
for (size_t j = 0; ok && j < ctx->kv.size(); ++j) { |
|
if (key == ctx->kv[j].key) { |
|
fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i); |
|
ok = false; |
|
} |
|
} |
|
if (!ok) { |
|
break; |
|
} |
|
|
|
ok = ok && gr.read(type); |
|
if (type == GGUF_TYPE_ARRAY) { |
|
is_array = true; |
|
ok = ok && gr.read(type); |
|
ok = ok && gr.read(n); |
|
} |
|
if (!ok) { |
|
break; |
|
} |
|
|
|
switch (type) { |
|
case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper<uint8_t> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper<int8_t> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper<uint16_t> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper<int16_t> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper<uint32_t> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper<int32_t> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper<float> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper<bool> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper<std::string>(gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper<uint64_t> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper<int64_t> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper<double> (gr, ctx->kv, key, is_array, n); break; |
|
case GGUF_TYPE_ARRAY: |
|
default: |
|
{ |
|
fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type); |
|
ok = false; |
|
} break; |
|
} |
|
} |
|
|
|
if (!ok) { |
|
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv); |
|
|
|
const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT); |
|
ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx); |
|
|
|
if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) { |
|
fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
} |
|
|
|
|
|
for (int64_t i = 0; ok && i < n_tensors; ++i) { |
|
struct gguf_tensor_info info; |
|
|
|
|
|
{ |
|
std::string name; |
|
try { |
|
ok = ok && gr.read(name); |
|
} catch (std::length_error &) { |
|
fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i); |
|
ok = false; |
|
} catch (std::bad_alloc &) { |
|
fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i); |
|
ok = false; |
|
} |
|
if (name.length() >= GGML_MAX_NAME) { |
|
fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME); |
|
ok = false; |
|
break; |
|
} |
|
ggml_set_name(&info.t, name.c_str()); |
|
|
|
|
|
for (int64_t j = 0; ok && j < i; ++j) { |
|
if (strcmp(info.t.name, ctx->info[j].t.name) == 0) { |
|
fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i); |
|
ok = false; |
|
break; |
|
} |
|
} |
|
} |
|
if (!ok) { |
|
break; |
|
} |
|
|
|
|
|
{ |
|
uint32_t n_dims = -1; |
|
ok = ok && gr.read(n_dims); |
|
if (n_dims > GGML_MAX_DIMS) { |
|
fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n", |
|
__func__, info.t.name, n_dims, GGML_MAX_DIMS); |
|
ok = false; |
|
break; |
|
} |
|
for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) { |
|
info.t.ne[j] = 1; |
|
if (j < n_dims) { |
|
ok = ok && gr.read(info.t.ne[j]); |
|
} |
|
|
|
|
|
if (info.t.ne[j] < 0) { |
|
fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n", |
|
__func__, info.t.name, j, info.t.ne[j]); |
|
ok = false; |
|
break; |
|
} |
|
} |
|
|
|
|
|
if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) || |
|
(INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) || |
|
(INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) { |
|
|
|
fprintf(stderr, "%s: total number of elements in tensor '%s' with shape " |
|
"(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n", |
|
__func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX); |
|
ok = false; |
|
break; |
|
} |
|
} |
|
if (!ok) { |
|
break; |
|
} |
|
|
|
|
|
{ |
|
ok = ok && gr.read(info.t.type); |
|
|
|
|
|
if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) { |
|
fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n", |
|
__func__, info.t.name, info.t.type, ggml_type_name(info.t.type)); |
|
ok = false; |
|
break; |
|
} |
|
const size_t type_size = ggml_type_size(info.t.type); |
|
const int64_t blck_size = ggml_blck_size(info.t.type); |
|
|
|
|
|
if (blck_size == 0 || info.t.ne[0] % blck_size != 0) { |
|
fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, " |
|
"not a multiple of block size (%" PRId64 ")\n", |
|
__func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size); |
|
ok = false; |
|
break; |
|
} |
|
|
|
|
|
info.t.nb[0] = type_size; |
|
info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size); |
|
for (int j = 2; j < GGML_MAX_DIMS; ++j) { |
|
info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1]; |
|
} |
|
} |
|
if (!ok) { |
|
break; |
|
} |
|
|
|
|
|
ok = ok && gr.read(info.offset); |
|
|
|
ctx->info.push_back(info); |
|
} |
|
|
|
if (!ok) { |
|
fprintf(stderr, "%s: failed to read tensor info\n", __func__); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors); |
|
|
|
|
|
if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) { |
|
fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
|
|
ctx->offset = ftell(file); |
|
|
|
|
|
{ |
|
ctx->size = 0; |
|
for (size_t i = 0; i < ctx->info.size(); ++i) { |
|
const gguf_tensor_info & ti = ctx->info[i]; |
|
if (ti.offset != ctx->size) { |
|
fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n", |
|
__func__, ti.t.name, ti.offset, ctx->size); |
|
fprintf(stderr, "%s: failed to read tensor data\n", __func__); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment); |
|
} |
|
} |
|
|
|
|
|
if (params.ctx != nullptr) { |
|
|
|
|
|
|
|
|
|
|
|
const size_t mem_size = |
|
params.no_alloc ? |
|
(n_tensors )*ggml_tensor_overhead() : |
|
(n_tensors + 1)*ggml_tensor_overhead() + ctx->size; |
|
|
|
struct ggml_init_params pdata = { |
|
mem_size, |
|
nullptr, |
|
params.no_alloc, |
|
}; |
|
|
|
*params.ctx = ggml_init(pdata); |
|
if (*params.ctx == nullptr) { |
|
fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
struct ggml_context * ctx_data = *params.ctx; |
|
|
|
struct ggml_tensor * data = nullptr; |
|
|
|
if (!params.no_alloc) { |
|
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); |
|
|
|
ok = ok && data != nullptr; |
|
|
|
if (ok) { |
|
ggml_set_name(data, "GGUF tensor data binary blob"); |
|
} |
|
|
|
|
|
ok = ok && gr.read(data->data, ctx->size); |
|
|
|
if (!ok) { |
|
fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__); |
|
ggml_free(ctx_data); |
|
*params.ctx = nullptr; |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
ctx->data = data->data; |
|
} |
|
|
|
ggml_set_no_alloc(ctx_data, true); |
|
|
|
|
|
for (size_t i = 0; i < ctx->info.size(); ++i) { |
|
const struct gguf_tensor_info & info = ctx->info[i]; |
|
|
|
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne); |
|
|
|
ok = ok && cur != nullptr; |
|
|
|
if (!ok) { |
|
break; |
|
} |
|
|
|
ggml_set_name(cur, info.t.name); |
|
|
|
|
|
if (!params.no_alloc) { |
|
cur->data = (char *) data->data + info.offset; |
|
} |
|
} |
|
|
|
if (!ok) { |
|
fprintf(stderr, "%s: failed to create tensors\n", __func__); |
|
ggml_free(ctx_data); |
|
*params.ctx = nullptr; |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
ggml_set_no_alloc(ctx_data, params.no_alloc); |
|
} |
|
|
|
return ctx; |
|
} |
|
|
|
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { |
|
FILE * file = ggml_fopen(fname, "rb"); |
|
|
|
if (!file) { |
|
fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname); |
|
return nullptr; |
|
} |
|
|
|
struct gguf_context * result = gguf_init_from_file_impl(file, params); |
|
fclose(file); |
|
return result; |
|
} |
|
|
|
void gguf_free(struct gguf_context * ctx) { |
|
if (ctx == nullptr) { |
|
return; |
|
} |
|
delete ctx; |
|
} |
|
|
|
const char * gguf_type_name(enum gguf_type type) { |
|
auto it = GGUF_TYPE_NAME.find(type); |
|
return it == GGUF_TYPE_NAME.end() ? nullptr : it->second; |
|
} |
|
|
|
uint32_t gguf_get_version(const struct gguf_context * ctx) { |
|
return ctx->version; |
|
} |
|
|
|
size_t gguf_get_alignment(const struct gguf_context * ctx) { |
|
return ctx->alignment; |
|
} |
|
|
|
size_t gguf_get_data_offset(const struct gguf_context * ctx) { |
|
return ctx->offset; |
|
} |
|
|
|
int64_t gguf_get_n_kv(const struct gguf_context * ctx) { |
|
return ctx->kv.size(); |
|
} |
|
|
|
int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) { |
|
|
|
int64_t keyfound = -1; |
|
|
|
const int64_t n_kv = gguf_get_n_kv(ctx); |
|
|
|
for (int64_t i = 0; i < n_kv; ++i) { |
|
if (strcmp(key, gguf_get_key(ctx, i)) == 0) { |
|
keyfound = i; |
|
break; |
|
} |
|
} |
|
|
|
return keyfound; |
|
} |
|
|
|
const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
return ctx->kv[key_id].get_key().c_str(); |
|
} |
|
|
|
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type(); |
|
} |
|
|
|
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].is_array); |
|
return ctx->kv[key_id].get_type(); |
|
} |
|
|
|
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); |
|
return ctx->kv[key_id].data.data(); |
|
} |
|
|
|
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING); |
|
return ctx->kv[key_id].data_string[i].c_str(); |
|
} |
|
|
|
size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
|
|
if (ctx->kv[key_id].type == GGUF_TYPE_STRING) { |
|
return ctx->kv[key_id].data_string.size(); |
|
} |
|
|
|
const size_t type_size = gguf_type_size(ctx->kv[key_id].type); |
|
GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0); |
|
return ctx->kv[key_id].data.size() / type_size; |
|
} |
|
|
|
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<uint8_t>(); |
|
} |
|
|
|
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<int8_t>(); |
|
} |
|
|
|
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<uint16_t>(); |
|
} |
|
|
|
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<int16_t>(); |
|
} |
|
|
|
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<uint32_t>(); |
|
} |
|
|
|
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<int32_t>(); |
|
} |
|
|
|
float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<float>(); |
|
} |
|
|
|
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<uint64_t>(); |
|
} |
|
|
|
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<int64_t>(); |
|
} |
|
|
|
double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<double>(); |
|
} |
|
|
|
bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<bool>(); |
|
} |
|
|
|
const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
return ctx->kv[key_id].get_val<std::string>().c_str(); |
|
} |
|
|
|
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) { |
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
|
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); |
|
return ctx->kv[key_id].data.data(); |
|
} |
|
|
|
int64_t gguf_get_n_tensors(const struct gguf_context * ctx) { |
|
return ctx->info.size(); |
|
} |
|
|
|
int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) { |
|
|
|
int64_t tensor_id = -1; |
|
|
|
const int64_t n_tensors = gguf_get_n_tensors(ctx); |
|
|
|
for (int64_t i = 0; i < n_tensors; ++i) { |
|
if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) { |
|
tensor_id = i; |
|
break; |
|
} |
|
} |
|
|
|
return tensor_id; |
|
} |
|
|
|
size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) { |
|
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
|
return ctx->info[tensor_id].offset; |
|
} |
|
|
|
const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) { |
|
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
|
return ctx->info[tensor_id].t.name; |
|
} |
|
|
|
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) { |
|
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
|
return ctx->info[tensor_id].t.type; |
|
} |
|
|
|
size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) { |
|
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
|
return ggml_nbytes(&ctx->info[tensor_id].t); |
|
} |
|
|
|
int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) { |
|
const int64_t key_id = gguf_find_key(ctx, key); |
|
if (key_id >= 0) { |
|
ctx->kv.erase(ctx->kv.begin() + key_id); |
|
} |
|
return key_id; |
|
} |
|
|
|
template<typename T> |
|
static void gguf_check_reserved_keys(const std::string & key, const T val) { |
|
if (key == GGUF_KEY_GENERAL_ALIGNMENT) { |
|
if constexpr (std::is_same<T, uint32_t>::value) { |
|
GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2"); |
|
} else { |
|
GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32"); |
|
} |
|
} |
|
} |
|
|
|
void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, val); |
|
} |
|
|
|
void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { |
|
gguf_check_reserved_keys(key, val); |
|
gguf_remove_key(ctx, key); |
|
ctx->kv.emplace_back(key, std::string(val)); |
|
} |
|
|
|
void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) { |
|
gguf_check_reserved_keys(key, data); |
|
gguf_remove_key(ctx, key); |
|
|
|
const size_t nbytes = n*gguf_type_size(type); |
|
std::vector<int8_t> tmp(nbytes); |
|
if (!tmp.empty()) { |
|
memcpy(tmp.data(), data, nbytes); |
|
} |
|
ctx->kv.emplace_back(key, tmp); |
|
ctx->kv.back().cast(type); |
|
} |
|
|
|
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) { |
|
gguf_check_reserved_keys(key, data); |
|
gguf_remove_key(ctx, key); |
|
|
|
std::vector<std::string> tmp(n); |
|
for (size_t i = 0; i < n; ++i) { |
|
tmp[i] = data[i]; |
|
} |
|
ctx->kv.emplace_back(key, tmp); |
|
} |
|
|
|
|
|
void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) { |
|
const int64_t n_kv = gguf_get_n_kv(src); |
|
for (int64_t i = 0; i < n_kv; ++i) { |
|
const struct gguf_kv & kv = src->kv[i]; |
|
|
|
if (!kv.is_array) { |
|
switch (kv.get_type()) { |
|
case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val<uint8_t>()); break; |
|
case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val<int8_t>()); break; |
|
case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val<uint16_t>()); break; |
|
case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val<int16_t>()); break; |
|
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val<uint32_t>()); break; |
|
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val<int32_t>()); break; |
|
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val<float>()); break; |
|
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val<uint64_t>()); break; |
|
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val<int64_t>()); break; |
|
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val<double>()); break; |
|
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val<bool>()); break; |
|
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val<std::string>().c_str()); break; |
|
case GGUF_TYPE_ARRAY: |
|
default: GGML_ABORT("invalid type"); |
|
} |
|
continue; |
|
} |
|
|
|
const size_t ne = kv.get_ne(); |
|
|
|
switch (kv.get_type()) { |
|
case GGUF_TYPE_UINT8: |
|
case GGUF_TYPE_INT8: |
|
case GGUF_TYPE_UINT16: |
|
case GGUF_TYPE_INT16: |
|
case GGUF_TYPE_UINT32: |
|
case GGUF_TYPE_INT32: |
|
case GGUF_TYPE_FLOAT32: |
|
case GGUF_TYPE_UINT64: |
|
case GGUF_TYPE_INT64: |
|
case GGUF_TYPE_FLOAT64: |
|
case GGUF_TYPE_BOOL: { |
|
gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne); |
|
} break; |
|
case GGUF_TYPE_STRING: { |
|
std::vector<const char *> tmp(ne); |
|
for (size_t j = 0; j < ne; ++j) { |
|
tmp[j] = kv.data_string[j].c_str(); |
|
} |
|
gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne); |
|
} break; |
|
case GGUF_TYPE_ARRAY: |
|
default: GGML_ABORT("invalid type"); |
|
} |
|
} |
|
} |
|
|
|
void gguf_add_tensor( |
|
struct gguf_context * ctx, |
|
const struct ggml_tensor * tensor) { |
|
GGML_ASSERT(tensor); |
|
if (gguf_find_tensor(ctx, tensor->name) != -1) { |
|
GGML_ABORT("duplicate tensor name: %s", tensor->name); |
|
} |
|
|
|
struct gguf_tensor_info ti; |
|
ti.t = *tensor; |
|
ti.offset = ctx->info.empty() ? 0 : |
|
ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment); |
|
ctx->info.push_back(ti); |
|
} |
|
|
|
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { |
|
const int64_t tensor_id = gguf_find_tensor(ctx, name); |
|
if (tensor_id < 0) { |
|
GGML_ABORT("tensor not found: %s", name); |
|
} |
|
struct ggml_tensor * tensor = &ctx->info[tensor_id].t; |
|
const size_t type_size = ggml_type_size(type); |
|
const int64_t blck_size = ggml_blck_size(type); |
|
|
|
tensor->type = type; |
|
GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type"); |
|
|
|
tensor->nb[0] = type_size; |
|
tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size); |
|
for (int i = 2; i < GGML_MAX_DIMS; i++) { |
|
tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1]; |
|
} |
|
|
|
|
|
const int64_t n_tensors = gguf_get_n_tensors(ctx); |
|
for (int64_t i = tensor_id + 1; i < n_tensors; ++i) { |
|
ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment); |
|
} |
|
} |
|
|
|
void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) { |
|
const int64_t tensor_id = gguf_find_tensor(ctx, name); |
|
if (tensor_id < 0) { |
|
GGML_ABORT("tensor not found: %s", name); |
|
} |
|
|
|
ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; |
|
} |
|
|
|
struct gguf_writer { |
|
std::vector<int8_t> & buf; |
|
|
|
gguf_writer(std::vector<int8_t> & buf) : buf(buf) {} |
|
|
|
template <typename T> |
|
void write(const T & val) const { |
|
for (size_t i = 0; i < sizeof(val); ++i) { |
|
buf.push_back(reinterpret_cast<const int8_t *>(&val)[i]); |
|
} |
|
} |
|
|
|
void write(const std::vector<int8_t> & val) const { |
|
buf.insert(buf.end(), val.begin(), val.end()); |
|
} |
|
|
|
void write(const bool & val) const { |
|
const int8_t val8 = val ? 1 : 0; |
|
write(val8); |
|
} |
|
|
|
void write(const std::string & val) const { |
|
{ |
|
const uint64_t n = val.length(); |
|
write(n); |
|
} |
|
for (size_t i = 0; i < val.length(); ++i) { |
|
buf.push_back(reinterpret_cast<const int8_t *>(val.data())[i]); |
|
} |
|
} |
|
|
|
void write(const char * val) const { |
|
write(std::string(val)); |
|
} |
|
|
|
void write(const enum ggml_type & val) const { |
|
write(int32_t(val)); |
|
} |
|
|
|
void write(const enum gguf_type & val) const { |
|
write(int32_t(val)); |
|
} |
|
|
|
void write(const struct gguf_kv & kv) const { |
|
const uint64_t ne = kv.get_ne(); |
|
|
|
write(kv.get_key()); |
|
|
|
if (kv.is_array) { |
|
write(GGUF_TYPE_ARRAY); |
|
write(kv.get_type()); |
|
write(ne); |
|
} else { |
|
write(kv.get_type()); |
|
} |
|
|
|
switch (kv.get_type()) { |
|
case GGUF_TYPE_UINT8: |
|
case GGUF_TYPE_INT8: |
|
case GGUF_TYPE_UINT16: |
|
case GGUF_TYPE_INT16: |
|
case GGUF_TYPE_UINT32: |
|
case GGUF_TYPE_INT32: |
|
case GGUF_TYPE_FLOAT32: |
|
case GGUF_TYPE_UINT64: |
|
case GGUF_TYPE_INT64: |
|
case GGUF_TYPE_FLOAT64: { |
|
write(kv.data); |
|
} break; |
|
case GGUF_TYPE_BOOL: { |
|
for (size_t i = 0; i < ne; ++i) { |
|
write(kv.get_val<bool>(i)); |
|
} |
|
} break; |
|
case GGUF_TYPE_STRING: { |
|
for (size_t i = 0; i < ne; ++i) { |
|
write(kv.get_val<std::string>(i)); |
|
} |
|
} break; |
|
case GGUF_TYPE_ARRAY: |
|
default: GGML_ABORT("invalid type"); |
|
} |
|
} |
|
|
|
void write_tensor_meta(const struct gguf_tensor_info & info) const { |
|
write(info.t.name); |
|
|
|
const uint32_t n_dims = ggml_n_dims(&info.t); |
|
write(n_dims); |
|
|
|
for (uint32_t j = 0; j < n_dims; ++j) { |
|
write(info.t.ne[j]); |
|
} |
|
write(info.t.type); |
|
write(info.offset); |
|
} |
|
|
|
void pad(const size_t alignment) const { |
|
while (buf.size() % alignment != 0) { |
|
const int8_t zero = 0; |
|
write(zero); |
|
} |
|
} |
|
|
|
void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const { |
|
GGML_ASSERT(buf.size() - offset_data == info.offset); |
|
|
|
GGML_ASSERT(ggml_is_contiguous(&info.t)); |
|
const size_t offset = buf.size(); |
|
const size_t nbytes = ggml_nbytes(&info.t); |
|
|
|
buf.resize(offset + nbytes); |
|
if (info.t.buffer) { |
|
ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes); |
|
} else { |
|
GGML_ASSERT(info.t.data); |
|
memcpy(buf.data() + offset, info.t.data, nbytes); |
|
} |
|
|
|
pad(alignment); |
|
} |
|
}; |
|
|
|
void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta) { |
|
const struct gguf_writer gw(buf); |
|
|
|
const int64_t n_kv = gguf_get_n_kv(ctx); |
|
const int64_t n_tensors = gguf_get_n_tensors(ctx); |
|
|
|
|
|
gw.write(GGUF_MAGIC[0]); |
|
gw.write(GGUF_MAGIC[1]); |
|
gw.write(GGUF_MAGIC[2]); |
|
gw.write(GGUF_MAGIC[3]); |
|
gw.write(ctx->version); |
|
gw.write(n_tensors); |
|
gw.write(n_kv); |
|
|
|
|
|
for (int64_t i = 0; i < n_kv; ++i) { |
|
gw.write(ctx->kv[i]); |
|
} |
|
|
|
|
|
for (int64_t i = 0; i < n_tensors; ++i) { |
|
gw.write_tensor_meta(ctx->info[i]); |
|
} |
|
|
|
|
|
gw.pad(ctx->alignment); |
|
|
|
if (only_meta) { |
|
return; |
|
} |
|
|
|
const size_t offset_data = gw.buf.size(); |
|
|
|
|
|
for (int64_t i = 0; i < n_tensors; ++i) { |
|
gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment); |
|
} |
|
} |
|
|
|
bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { |
|
FILE * file = ggml_fopen(fname, "wb"); |
|
|
|
if (!file) { |
|
fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname); |
|
return false; |
|
} |
|
|
|
std::vector<int8_t> buf; |
|
gguf_write_to_buf(ctx, buf, only_meta); |
|
const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size(); |
|
fclose(file); |
|
return ok; |
|
} |
|
|
|
size_t gguf_get_meta_size(const struct gguf_context * ctx) { |
|
|
|
std::vector<int8_t> buf; |
|
gguf_write_to_buf(ctx, buf, true); |
|
return buf.size(); |
|
} |
|
|
|
void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { |
|
std::vector<int8_t> buf; |
|
gguf_write_to_buf(ctx, buf, true); |
|
memcpy(data, buf.data(), buf.size()); |
|
} |
|
|