Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install ctransformers') | |
import ctransformers | |
import time | |
import requests | |
from tqdm import tqdm | |
import uuid | |
#Get the model file - you will need Expandable Storage to make this work | |
if not os.path.isfile('llama-2-7b.ggmlv3.q4_K_S.bin'): | |
print("Downloading Model from HuggingFace") | |
url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin" | |
response = requests.get(url, stream=True) | |
total_size_in_bytes= int(response.headers.get('content-length', 0)) | |
block_size = 1024 #1 Kibibyte | |
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) | |
with open('llama-2-7b.ggmlv3.q4_K_S.bin', 'wb') as file: | |
for data in response.iter_content(block_size): | |
progress_bar.update(len(data)) | |
file.write(data) | |
progress_bar.close() | |
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: | |
print("ERROR, something went wrong") | |
#Sets up the transformer library and adds in the Llama-2 model | |
configObj = ctransformers.Config(stop=["\n", 'User']) | |
config = ctransformers.AutoConfig(config=configObj, model_type='llama') | |
config.config.stop = ["\n"] | |
llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config) | |
print("Loaded model") | |
def time_it(func): | |
def wrapper(*args, **kwargs): | |
start_time = time.time() | |
result = func(*args, **kwargs) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
print(f"Function '{func.__name__}' took {execution_time:.6f} seconds to execute.") | |
return result | |
return wrapper | |
def complete(prompt, stop=["User", "Assistant"]): | |
tokens = llm.tokenize(prompt) | |
token_count = 0 | |
output = '' | |
for token in llm.generate(tokens): | |
token_count += 1 | |
result = llm.detokenize(token) | |
output += result | |
for word in stop: | |
if word in output: | |
print('\n') | |
return [output, token_count] | |
print(result, end='',flush=True) | |
print('\n') | |
return [output, token_count] | |
while True: | |
question = input("\nWhat is your question? > ") | |
start_time = time.time() | |
output, token_count = complete(f'User: {question}. Can you please answer this as informative but concisely as possible.\nAssistant: ') | |
end_time = time.time() | |
execution_time = end_time - start_time | |
print(f"{token_count} tokens generated in {execution_time:.6f} seconds.\n{token_count/execution_time} tokens per second") | |