Suchinthana commited on
Commit
e989afe
·
1 Parent(s): 778ce34

Error correction

Browse files
Files changed (1) hide show
  1. app.py +16 -34
app.py CHANGED
@@ -29,44 +29,26 @@ def predict_and_plot(dirty, wait, lastyear, usa):
29
  # Predicting on test set for comparison
30
  y_pred = model.predict(X_test)
31
 
32
- # Creating subplots for each variable and showing predicted value
33
- fig, axs = plt.subplots(2, 2, figsize=(12, 10))
34
 
35
  # Plot dirty variable distribution with predicted value
36
- axs[0, 0].hist(X_test[:, 0], bins=30, color='gray', alpha=0.5, label='Dirty Distribution')
37
- axs[0, 0].axvline(dirty, color='orange', linestyle='--', label='Input Value (Dirty)')
38
- axs[0, 0].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
39
- axs[0, 0].set_title('Distribution of Dirty')
40
- axs[0, 0].set_xlabel('Dirty')
41
- axs[0, 0].set_ylabel('Frequency')
42
- axs[0, 0].legend()
43
 
44
  # Plot wait variable distribution with predicted value
45
- axs[0, 1].hist(X_test[:, 1], bins=30, color='gray', alpha=0.5, label='Wait Distribution')
46
- axs[0, 1].axvline(wait, color='orange', linestyle='--', label='Input Value (Wait)')
47
- axs[0, 1].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
48
- axs[0, 1].set_title('Distribution of Wait')
49
- axs[0, 1].set_xlabel('Wait')
50
- axs[0, 1].set_ylabel('Frequency')
51
- axs[0, 1].legend()
52
-
53
- # Plot lastyear variable distribution with predicted value
54
- axs[1, 0].hist(X_test[:, 2], bins=30, color='gray', alpha=0.5, label='Lastyear Distribution')
55
- axs[1, 0].axvline(lastyear, color='orange', linestyle='--', label='Input Value (Lastyear)')
56
- axs[1, 0].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
57
- axs[1, 0].set_title('Distribution of Lastyear')
58
- axs[1, 0].set_xlabel('Lastyear')
59
- axs[1, 0].set_ylabel('Frequency')
60
- axs[1, 0].legend()
61
-
62
- # Plot usa variable distribution with predicted value
63
- axs[1, 1].hist(X_test[:, 3], bins=30, color='gray', alpha=0.5, label='USA Distribution')
64
- axs[1, 1].axvline(usa, color='orange', linestyle='--', label='Input Value (USA)')
65
- axs[1, 1].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
66
- axs[1, 1].set_title('Distribution of USA')
67
- axs[1, 1].set_xlabel('USA')
68
- axs[1, 1].set_ylabel('Frequency')
69
- axs[1, 1].legend()
70
 
71
  # Adjust layout and save the plot
72
  plt.tight_layout()
 
29
  # Predicting on test set for comparison
30
  y_pred = model.predict(X_test)
31
 
32
+ # Creating subplots for dirty and wait, showing predicted value
33
+ fig, axs = plt.subplots(1, 2, figsize=(12, 6))
34
 
35
  # Plot dirty variable distribution with predicted value
36
+ axs[0].hist(X_test.iloc[:, 0], bins=30, color='gray', alpha=0.5, label='Dirty Distribution') # Use iloc for pandas DataFrame
37
+ axs[0].axvline(dirty, color='orange', linestyle='--', label='Input Value (Dirty)')
38
+ axs[0].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
39
+ axs[0].set_title('Distribution of Dirty')
40
+ axs[0].set_xlabel('Dirty')
41
+ axs[0].set_ylabel('Frequency')
42
+ axs[0].legend()
43
 
44
  # Plot wait variable distribution with predicted value
45
+ axs[1].hist(X_test.iloc[:, 1], bins=30, color='gray', alpha=0.5, label='Wait Distribution') # Use iloc for pandas DataFrame
46
+ axs[1].axvline(wait, color='orange', linestyle='--', label='Input Value (Wait)')
47
+ axs[1].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
48
+ axs[1].set_title('Distribution of Wait')
49
+ axs[1].set_xlabel('Wait')
50
+ axs[1].set_ylabel('Frequency')
51
+ axs[1].legend()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  # Adjust layout and save the plot
54
  plt.tight_layout()