Rakesh Chavhan commited on
Commit
8875fed
·
0 Parent(s):

inital commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. .gitignore +141 -0
  3. .pre-commit-config.yaml +46 -0
  4. .vscode/settings.json +19 -0
  5. LICENSE +29 -0
  6. MANIFEST.in +8 -0
  7. README.md +272 -0
  8. README_CN.md +276 -0
  9. VERSION +1 -0
  10. app.py +30 -0
  11. assets/realesrgan_logo.png +0 -0
  12. assets/realesrgan_logo_ai.png +0 -0
  13. assets/realesrgan_logo_av.png +0 -0
  14. assets/realesrgan_logo_gi.png +0 -0
  15. assets/realesrgan_logo_gv.png +0 -0
  16. assets/teaser-text.png +0 -0
  17. assets/teaser.jpg +0 -0
  18. cog.yaml +22 -0
  19. cog_predict.py +148 -0
  20. docs/CONTRIBUTING.md +44 -0
  21. docs/FAQ.md +10 -0
  22. docs/Training.md +271 -0
  23. docs/Training_CN.md +271 -0
  24. docs/anime_comparisons.md +66 -0
  25. docs/anime_comparisons_CN.md +68 -0
  26. docs/anime_model.md +68 -0
  27. docs/anime_video_model.md +136 -0
  28. docs/feedback.md +11 -0
  29. docs/model_zoo.md +49 -0
  30. docs/ncnn_conversion.md +11 -0
  31. gfpgan/weights/detection_Resnet50_Final.pth +3 -0
  32. gfpgan/weights/parsing_parsenet.pth +3 -0
  33. inference_realesrgan copy.py +166 -0
  34. inference_realesrgan.py +88 -0
  35. inference_realesrgan_video.py +398 -0
  36. inputs/image-31.png +0 -0
  37. options/finetune_realesrgan_x4plus.yml +188 -0
  38. options/finetune_realesrgan_x4plus_pairdata.yml +150 -0
  39. options/train_realesrgan_x2plus.yml +186 -0
  40. options/train_realesrgan_x4plus.yml +185 -0
  41. options/train_realesrnet_x2plus.yml +145 -0
  42. options/train_realesrnet_x4plus.yml +144 -0
  43. realesrgan/__init__.py +6 -0
  44. realesrgan/archs/__init__.py +10 -0
  45. realesrgan/archs/discriminator_arch.py +67 -0
  46. realesrgan/archs/srvgg_arch.py +69 -0
  47. realesrgan/data/__init__.py +10 -0
  48. realesrgan/data/realesrgan_dataset.py +192 -0
  49. realesrgan/data/realesrgan_paired_dataset.py +108 -0
  50. realesrgan/models/__init__.py +10 -0
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ *.pth filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ignored folders
2
+ venv/*
3
+ datasets/*
4
+ experiments/*
5
+ results/*
6
+ tb_logger/*
7
+ wandb/*
8
+ tmp/*
9
+
10
+
11
+ version.py
12
+
13
+ # Byte-compiled / optimized / DLL files
14
+ __pycache__/
15
+ *.py[cod]
16
+ *$py.class
17
+
18
+ # C extensions
19
+ *.so
20
+
21
+ # Distribution / packaging
22
+ .Python
23
+ build/
24
+ develop-eggs/
25
+ dist/
26
+ downloads/
27
+ eggs/
28
+ .eggs/
29
+ lib/
30
+ lib64/
31
+ parts/
32
+ sdist/
33
+ var/
34
+ wheels/
35
+ pip-wheel-metadata/
36
+ share/python-wheels/
37
+ *.egg-info/
38
+ .installed.cfg
39
+ *.egg
40
+ MANIFEST
41
+
42
+ # PyInstaller
43
+ # Usually these files are written by a python script from a template
44
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
45
+ *.manifest
46
+ *.spec
47
+
48
+ # Installer logs
49
+ pip-log.txt
50
+ pip-delete-this-directory.txt
51
+
52
+ # Unit test / coverage reports
53
+ htmlcov/
54
+ .tox/
55
+ .nox/
56
+ .coverage
57
+ .coverage.*
58
+ .cache
59
+ nosetests.xml
60
+ coverage.xml
61
+ *.cover
62
+ *.py,cover
63
+ .hypothesis/
64
+ .pytest_cache/
65
+
66
+ # Translations
67
+ *.mo
68
+ *.pot
69
+
70
+ # Django stuff:
71
+ *.log
72
+ local_settings.py
73
+ db.sqlite3
74
+ db.sqlite3-journal
75
+
76
+ # Flask stuff:
77
+ instance/
78
+ .webassets-cache
79
+
80
+ # Scrapy stuff:
81
+ .scrapy
82
+
83
+ # Sphinx documentation
84
+ docs/_build/
85
+
86
+ # PyBuilder
87
+ target/
88
+
89
+ # Jupyter Notebook
90
+ .ipynb_checkpoints
91
+
92
+ # IPython
93
+ profile_default/
94
+ ipython_config.py
95
+
96
+ # pyenv
97
+ .python-version
98
+
99
+ # pipenv
100
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
101
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
102
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
103
+ # install all needed dependencies.
104
+ #Pipfile.lock
105
+
106
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
107
+ __pypackages__/
108
+
109
+ # Celery stuff
110
+ celerybeat-schedule
111
+ celerybeat.pid
112
+
113
+ # SageMath parsed files
114
+ *.sage.py
115
+
116
+ # Environments
117
+ .env
118
+ .venv
119
+ env/
120
+ venv/
121
+ ENV/
122
+ env.bak/
123
+ venv.bak/
124
+
125
+ # Spyder project settings
126
+ .spyderproject
127
+ .spyproject
128
+
129
+ # Rope project settings
130
+ .ropeproject
131
+
132
+ # mkdocs documentation
133
+ /site
134
+
135
+ # mypy
136
+ .mypy_cache/
137
+ .dmypy.json
138
+ dmypy.json
139
+
140
+ # Pyre type checker
141
+ .pyre/
.pre-commit-config.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ # flake8
3
+ - repo: https://github.com/PyCQA/flake8
4
+ rev: 3.8.3
5
+ hooks:
6
+ - id: flake8
7
+ args: ["--config=setup.cfg", "--ignore=W504, W503"]
8
+
9
+ # modify known_third_party
10
+ - repo: https://github.com/asottile/seed-isort-config
11
+ rev: v2.2.0
12
+ hooks:
13
+ - id: seed-isort-config
14
+
15
+ # isort
16
+ - repo: https://github.com/timothycrosley/isort
17
+ rev: 5.2.2
18
+ hooks:
19
+ - id: isort
20
+
21
+ # yapf
22
+ - repo: https://github.com/pre-commit/mirrors-yapf
23
+ rev: v0.30.0
24
+ hooks:
25
+ - id: yapf
26
+
27
+ # codespell
28
+ - repo: https://github.com/codespell-project/codespell
29
+ rev: v2.1.0
30
+ hooks:
31
+ - id: codespell
32
+
33
+ # pre-commit-hooks
34
+ - repo: https://github.com/pre-commit/pre-commit-hooks
35
+ rev: v3.2.0
36
+ hooks:
37
+ - id: trailing-whitespace # Trim trailing whitespace
38
+ - id: check-yaml # Attempt to load all yaml files to verify syntax
39
+ - id: check-merge-conflict # Check for files that contain merge conflict strings
40
+ - id: double-quote-string-fixer # Replace double quoted strings with single quoted strings
41
+ - id: end-of-file-fixer # Make sure files end in a newline and only a newline
42
+ - id: requirements-txt-fixer # Sort entries in requirements.txt and remove incorrect entry for pkg-resources==0.0.0
43
+ - id: fix-encoding-pragma # Remove the coding pragma: # -*- coding: utf-8 -*-
44
+ args: ["--remove"]
45
+ - id: mixed-line-ending # Replace or check mixed line ending
46
+ args: ["--fix=lf"]
.vscode/settings.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "files.trimTrailingWhitespace": true,
3
+ "editor.wordWrap": "on",
4
+ "editor.rulers": [
5
+ 80,
6
+ 120
7
+ ],
8
+ "editor.renderWhitespace": "all",
9
+ "editor.renderControlCharacters": true,
10
+ "python.formatting.provider": "yapf",
11
+ "python.formatting.yapfArgs": [
12
+ "--style",
13
+ "{BASED_ON_STYLE = pep8, BLANK_LINE_BEFORE_NESTED_CLASS_OR_DEF = true, SPLIT_BEFORE_EXPRESSION_AFTER_OPENING_PAREN = true, COLUMN_LIMIT = 120}"
14
+ ],
15
+ "python.linting.flake8Enabled": true,
16
+ "python.linting.flake8Args": [
17
+ "max-line-length=120"
18
+ ],
19
+ }
LICENSE ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2021, Xintao Wang
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ 1. Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ 2. Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ 3. Neither the name of the copyright holder nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
MANIFEST.in ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ include assets/*
2
+ include inputs/*
3
+ include scripts/*.py
4
+ include inference_realesrgan.py
5
+ include VERSION
6
+ include LICENSE
7
+ include requirements.txt
8
+ include weights/README.md
README.md ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center">
2
+ <img src="assets/realesrgan_logo.png" height=120>
3
+ </p>
4
+
5
+ ## <div align="center"><b><a href="README.md">English</a> | <a href="README_CN.md">简体中文</a></b></div>
6
+
7
+ <div align="center">
8
+
9
+ 👀[**Demos**](#-demos-videos) **|** 🚩[**Updates**](#-updates) **|** ⚡[**Usage**](#-quick-inference) **|** 🏰[**Model Zoo**](docs/model_zoo.md) **|** 🔧[Install](#-dependencies-and-installation) **|** 💻[Train](docs/Training.md) **|** ❓[FAQ](docs/FAQ.md) **|** 🎨[Contribution](docs/CONTRIBUTING.md)
10
+
11
+ [![download](https://img.shields.io/github/downloads/xinntao/Real-ESRGAN/total.svg)](https://github.com/xinntao/Real-ESRGAN/releases)
12
+ [![PyPI](https://img.shields.io/pypi/v/realesrgan)](https://pypi.org/project/realesrgan/)
13
+ [![Open issue](https://img.shields.io/github/issues/xinntao/Real-ESRGAN)](https://github.com/xinntao/Real-ESRGAN/issues)
14
+ [![Closed issue](https://img.shields.io/github/issues-closed/xinntao/Real-ESRGAN)](https://github.com/xinntao/Real-ESRGAN/issues)
15
+ [![LICENSE](https://img.shields.io/github/license/xinntao/Real-ESRGAN.svg)](https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE)
16
+ [![python lint](https://github.com/xinntao/Real-ESRGAN/actions/workflows/pylint.yml/badge.svg)](https://github.com/xinntao/Real-ESRGAN/blob/master/.github/workflows/pylint.yml)
17
+ [![Publish-pip](https://github.com/xinntao/Real-ESRGAN/actions/workflows/publish-pip.yml/badge.svg)](https://github.com/xinntao/Real-ESRGAN/blob/master/.github/workflows/publish-pip.yml)
18
+
19
+ </div>
20
+
21
+ 🔥 **AnimeVideo-v3 model (动漫视频小模型)**. Please see [[*anime video models*](docs/anime_video_model.md)] and [[*comparisons*](docs/anime_comparisons.md)]<br>
22
+ 🔥 **RealESRGAN_x4plus_anime_6B** for anime images **(动漫插图模型)**. Please see [[*anime_model*](docs/anime_model.md)]
23
+
24
+ <!-- 1. You can try in our website: [ARC Demo](https://arc.tencent.com/en/ai-demos/imgRestore) (now only support RealESRGAN_x4plus_anime_6B) -->
25
+ 1. :boom: **Update** online Replicate demo: [![Replicate](https://img.shields.io/static/v1?label=Demo&message=Replicate&color=blue)](https://replicate.com/xinntao/realesrgan)
26
+ 1. Online Colab demo for Real-ESRGAN: [![Colab](https://img.shields.io/static/v1?label=Demo&message=Colab&color=orange)](https://colab.research.google.com/drive/1k2Zod6kSHEvraybHl50Lys0LerhyTMCo?usp=sharing) **|** Online Colab demo for for Real-ESRGAN (**anime videos**): [![Colab](https://img.shields.io/static/v1?label=Demo&message=Colab&color=orange)](https://colab.research.google.com/drive/1yNl9ORUxxlL4N0keJa2SEPB61imPQd1B?usp=sharing)
27
+ 1. Portable [Windows](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-windows.zip) / [Linux](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip) / [MacOS](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-macos.zip) **executable files for Intel/AMD/Nvidia GPU**. You can find more information [here](#portable-executable-files-ncnn). The ncnn implementation is in [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan)
28
+ <!-- 1. You can watch enhanced animations in [Tencent Video](https://v.qq.com/s/topic/v_child/render/fC4iyCAM.html). 欢迎观看[腾讯视频动漫修复](https://v.qq.com/s/topic/v_child/render/fC4iyCAM.html) -->
29
+
30
+ Real-ESRGAN aims at developing **Practical Algorithms for General Image/Video Restoration**.<br>
31
+ We extend the powerful ESRGAN to a practical restoration application (namely, Real-ESRGAN), which is trained with pure synthetic data.
32
+
33
+ 🌌 Thanks for your valuable feedbacks/suggestions. All the feedbacks are updated in [feedback.md](docs/feedback.md).
34
+
35
+ ---
36
+
37
+ If Real-ESRGAN is helpful, please help to ⭐ this repo or recommend it to your friends 😊 <br>
38
+ Other recommended projects:<br>
39
+ ▶️ [GFPGAN](https://github.com/TencentARC/GFPGAN): A practical algorithm for real-world face restoration <br>
40
+ ▶️ [BasicSR](https://github.com/xinntao/BasicSR): An open-source image and video restoration toolbox<br>
41
+ ▶️ [facexlib](https://github.com/xinntao/facexlib): A collection that provides useful face-relation functions.<br>
42
+ ▶️ [HandyView](https://github.com/xinntao/HandyView): A PyQt5-based image viewer that is handy for view and comparison <br>
43
+ ▶️ [HandyFigure](https://github.com/xinntao/HandyFigure): Open source of paper figures <br>
44
+
45
+ ---
46
+
47
+ ### 📖 Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
48
+
49
+ > [[Paper](https://arxiv.org/abs/2107.10833)] &emsp; [[YouTube Video](https://www.youtube.com/watch?v=fxHWoDSSvSc)] &emsp; [[B站讲解](https://www.bilibili.com/video/BV1H34y1m7sS/)] &emsp; [[Poster](https://xinntao.github.io/projects/RealESRGAN_src/RealESRGAN_poster.pdf)] &emsp; [[PPT slides](https://docs.google.com/presentation/d/1QtW6Iy8rm8rGLsJ0Ldti6kP-7Qyzy6XL/edit?usp=sharing&ouid=109799856763657548160&rtpof=true&sd=true)]<br>
50
+ > [Xintao Wang](https://xinntao.github.io/), Liangbin Xie, [Chao Dong](https://scholar.google.com.hk/citations?user=OSDCB0UAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en) <br>
51
+ > [Tencent ARC Lab](https://arc.tencent.com/en/ai-demos/imgRestore); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
52
+
53
+ <p align="center">
54
+ <img src="assets/teaser.jpg">
55
+ </p>
56
+
57
+ ---
58
+
59
+ <!---------------------------------- Updates --------------------------->
60
+ ## 🚩 Updates
61
+
62
+ - ✅ Add the **realesr-general-x4v3** model - a tiny small model for general scenes. It also supports the **-dn** option to balance the noise (avoiding over-smooth results). **-dn** is short for denoising strength.
63
+ - ✅ Update the **RealESRGAN AnimeVideo-v3** model. Please see [anime video models](docs/anime_video_model.md) and [comparisons](docs/anime_comparisons.md) for more details.
64
+ - ✅ Add small models for anime videos. More details are in [anime video models](docs/anime_video_model.md).
65
+ - ✅ Add the ncnn implementation [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan).
66
+ - ✅ Add [*RealESRGAN_x4plus_anime_6B.pth*](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth), which is optimized for **anime** images with much smaller model size. More details and comparisons with [waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan) are in [**anime_model.md**](docs/anime_model.md)
67
+ - ✅ Support finetuning on your own data or paired data (*i.e.*, finetuning ESRGAN). See [here](docs/Training.md#Finetune-Real-ESRGAN-on-your-own-dataset)
68
+ - ✅ Integrate [GFPGAN](https://github.com/TencentARC/GFPGAN) to support **face enhancement**.
69
+ - ✅ Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Real-ESRGAN). Thanks [@AK391](https://github.com/AK391)
70
+ - ✅ Support arbitrary scale with `--outscale` (It actually further resizes outputs with `LANCZOS4`). Add *RealESRGAN_x2plus.pth* model.
71
+ - ✅ [The inference code](inference_realesrgan.py) supports: 1) **tile** options; 2) images with **alpha channel**; 3) **gray** images; 4) **16-bit** images.
72
+ - ✅ The training codes have been released. A detailed guide can be found in [Training.md](docs/Training.md).
73
+
74
+ ---
75
+
76
+ <!---------------------------------- Demo videos --------------------------->
77
+ ## 👀 Demos Videos
78
+
79
+ #### Bilibili
80
+
81
+ - [大闹天宫片段](https://www.bilibili.com/video/BV1ja41117zb)
82
+ - [Anime dance cut 动漫魔性舞蹈](https://www.bilibili.com/video/BV1wY4y1L7hT/)
83
+ - [海贼王片段](https://www.bilibili.com/video/BV1i3411L7Gy/)
84
+
85
+ #### YouTube
86
+
87
+ ## 🔧 Dependencies and Installation
88
+
89
+ - Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html))
90
+ - [PyTorch >= 1.7](https://pytorch.org/)
91
+
92
+ ### Installation
93
+
94
+ 1. Clone repo
95
+
96
+ ```bash
97
+ git clone https://github.com/xinntao/Real-ESRGAN.git
98
+ cd Real-ESRGAN
99
+ ```
100
+
101
+ 1. Install dependent packages
102
+
103
+ ```bash
104
+ # Install basicsr - https://github.com/xinntao/BasicSR
105
+ # We use BasicSR for both training and inference
106
+ pip install basicsr
107
+ # facexlib and gfpgan are for face enhancement
108
+ pip install facexlib
109
+ pip install gfpgan
110
+ pip install -r requirements.txt
111
+ python setup.py develop
112
+ ```
113
+
114
+ ---
115
+
116
+ ## ⚡ Quick Inference
117
+
118
+ There are usually three ways to inference Real-ESRGAN.
119
+
120
+ 1. [Online inference](#online-inference)
121
+ 1. [Portable executable files (NCNN)](#portable-executable-files-ncnn)
122
+ 1. [Python script](#python-script)
123
+
124
+ ### Online inference
125
+
126
+ 1. You can try in our website: [ARC Demo](https://arc.tencent.com/en/ai-demos/imgRestore) (now only support RealESRGAN_x4plus_anime_6B)
127
+ 1. [Colab Demo](https://colab.research.google.com/drive/1k2Zod6kSHEvraybHl50Lys0LerhyTMCo?usp=sharing) for Real-ESRGAN **|** [Colab Demo](https://colab.research.google.com/drive/1yNl9ORUxxlL4N0keJa2SEPB61imPQd1B?usp=sharing) for Real-ESRGAN (**anime videos**).
128
+
129
+ ### Portable executable files (NCNN)
130
+
131
+ You can download [Windows](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-windows.zip) / [Linux](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip) / [MacOS](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-macos.zip) **executable files for Intel/AMD/Nvidia GPU**.
132
+
133
+ This executable file is **portable** and includes all the binaries and models required. No CUDA or PyTorch environment is needed.<br>
134
+
135
+ You can simply run the following command (the Windows example, more information is in the README.md of each executable files):
136
+
137
+ ```bash
138
+ ./realesrgan-ncnn-vulkan.exe -i input.jpg -o output.png -n model_name
139
+ ```
140
+
141
+ We have provided five models:
142
+
143
+ 1. realesrgan-x4plus (default)
144
+ 2. realesrnet-x4plus
145
+ 3. realesrgan-x4plus-anime (optimized for anime images, small model size)
146
+ 4. realesr-animevideov3 (animation video)
147
+
148
+ You can use the `-n` argument for other models, for example, `./realesrgan-ncnn-vulkan.exe -i input.jpg -o output.png -n realesrnet-x4plus`
149
+
150
+ #### Usage of portable executable files
151
+
152
+ 1. Please refer to [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan#computer-usages) for more details.
153
+ 1. Note that it does not support all the functions (such as `outscale`) as the python script `inference_realesrgan.py`.
154
+
155
+ ```console
156
+ Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...
157
+
158
+ -h show this help
159
+ -i input-path input image path (jpg/png/webp) or directory
160
+ -o output-path output image path (jpg/png/webp) or directory
161
+ -s scale upscale ratio (can be 2, 3, 4. default=4)
162
+ -t tile-size tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
163
+ -m model-path folder path to the pre-trained models. default=models
164
+ -n model-name model name (default=realesr-animevideov3, can be realesr-animevideov3 | realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
165
+ -g gpu-id gpu device to use (default=auto) can be 0,1,2 for multi-gpu
166
+ -j load:proc:save thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
167
+ -x enable tta mode"
168
+ -f format output image format (jpg/png/webp, default=ext/png)
169
+ -v verbose output
170
+ ```
171
+
172
+ Note that it may introduce block inconsistency (and also generate slightly different results from the PyTorch implementation), because this executable file first crops the input image into several tiles, and then processes them separately, finally stitches together.
173
+
174
+ ### Python script
175
+
176
+ #### Usage of python script
177
+
178
+ 1. You can use X4 model for **arbitrary output size** with the argument `outscale`. The program will further perform cheap resize operation after the Real-ESRGAN output.
179
+
180
+ ```console
181
+ Usage: python inference_realesrgan.py -n RealESRGAN_x4plus -i infile -o outfile [options]...
182
+
183
+ A common command: python inference_realesrgan.py -n RealESRGAN_x4plus -i infile --outscale 3.5 --face_enhance
184
+
185
+ -h show this help
186
+ -i --input Input image or folder. Default: inputs
187
+ -o --output Output folder. Default: results
188
+ -n --model_name Model name. Default: RealESRGAN_x4plus
189
+ -s, --outscale The final upsampling scale of the image. Default: 4
190
+ --suffix Suffix of the restored image. Default: out
191
+ -t, --tile Tile size, 0 for no tile during testing. Default: 0
192
+ --face_enhance Whether to use GFPGAN to enhance face. Default: False
193
+ --fp32 Use fp32 precision during inference. Default: fp16 (half precision).
194
+ --ext Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
195
+ ```
196
+
197
+ #### Inference general images
198
+
199
+ Download pre-trained models: [RealESRGAN_x4plus.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth)
200
+
201
+ ```bash
202
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P weights
203
+ ```
204
+
205
+ Inference!
206
+
207
+ ```bash
208
+ python inference_realesrgan.py -n RealESRGAN_x4plus -i inputs --face_enhance
209
+ ```
210
+
211
+ Results are in the `results` folder
212
+
213
+ #### Inference anime images
214
+
215
+ <p align="center">
216
+ <img src="https://raw.githubusercontent.com/xinntao/public-figures/master/Real-ESRGAN/cmp_realesrgan_anime_1.png">
217
+ </p>
218
+
219
+ Pre-trained models: [RealESRGAN_x4plus_anime_6B](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth)<br>
220
+ More details and comparisons with [waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan) are in [**anime_model.md**](docs/anime_model.md)
221
+
222
+ ```bash
223
+ # download model
224
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P weights
225
+ # inference
226
+ python inference_realesrgan.py -n RealESRGAN_x4plus_anime_6B -i inputs
227
+ ```
228
+
229
+ Results are in the `results` folder
230
+
231
+ ---
232
+
233
+ ## BibTeX
234
+
235
+ @InProceedings{wang2021realesrgan,
236
+ author = {Xintao Wang and Liangbin Xie and Chao Dong and Ying Shan},
237
+ title = {Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data},
238
+ booktitle = {International Conference on Computer Vision Workshops (ICCVW)},
239
+ date = {2021}
240
+ }
241
+
242
+ ## 📧 Contact
243
+
244
+ If you have any question, please email `[email protected]` or `[email protected]`.
245
+
246
+ <!---------------------------------- Projects that use Real-ESRGAN --------------------------->
247
+ ## 🧩 Projects that use Real-ESRGAN
248
+
249
+ If you develop/use Real-ESRGAN in your projects, welcome to let me know.
250
+
251
+ - NCNN-Android: [RealSR-NCNN-Android](https://github.com/tumuyan/RealSR-NCNN-Android) by [tumuyan](https://github.com/tumuyan)
252
+ - VapourSynth: [vs-realesrgan](https://github.com/HolyWu/vs-realesrgan) by [HolyWu](https://github.com/HolyWu)
253
+ - NCNN: [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan)
254
+
255
+ &nbsp;&nbsp;&nbsp;&nbsp;**GUI**
256
+
257
+ - [Waifu2x-Extension-GUI](https://github.com/AaronFeng753/Waifu2x-Extension-GUI) by [AaronFeng753](https://github.com/AaronFeng753)
258
+ - [Squirrel-RIFE](https://github.com/Justin62628/Squirrel-RIFE) by [Justin62628](https://github.com/Justin62628)
259
+ - [Real-GUI](https://github.com/scifx/Real-GUI) by [scifx](https://github.com/scifx)
260
+ - [Real-ESRGAN_GUI](https://github.com/net2cn/Real-ESRGAN_GUI) by [net2cn](https://github.com/net2cn)
261
+ - [Real-ESRGAN-EGUI](https://github.com/WGzeyu/Real-ESRGAN-EGUI) by [WGzeyu](https://github.com/WGzeyu)
262
+ - [anime_upscaler](https://github.com/shangar21/anime_upscaler) by [shangar21](https://github.com/shangar21)
263
+ - [Upscayl](https://github.com/upscayl/upscayl) by [Nayam Amarshe](https://github.com/NayamAmarshe) and [TGS963](https://github.com/TGS963)
264
+
265
+ ## 🤗 Acknowledgement
266
+
267
+ Thanks for all the contributors.
268
+
269
+ - [AK391](https://github.com/AK391): Integrate RealESRGAN to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Real-ESRGAN).
270
+ - [Asiimoviet](https://github.com/Asiimoviet): Translate the README.md to Chinese (中文).
271
+ - [2ji3150](https://github.com/2ji3150): Thanks for the [detailed and valuable feedbacks/suggestions](https://github.com/xinntao/Real-ESRGAN/issues/131).
272
+ - [Jared-02](https://github.com/Jared-02): Translate the Training.md to Chinese (中文).
README_CN.md ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center">
2
+ <img src="assets/realesrgan_logo.png" height=120>
3
+ </p>
4
+
5
+ ## <div align="center"><b><a href="README.md">English</a> | <a href="README_CN.md">简体中文</a></b></div>
6
+
7
+ [![download](https://img.shields.io/github/downloads/xinntao/Real-ESRGAN/total.svg)](https://github.com/xinntao/Real-ESRGAN/releases)
8
+ [![PyPI](https://img.shields.io/pypi/v/realesrgan)](https://pypi.org/project/realesrgan/)
9
+ [![Open issue](https://img.shields.io/github/issues/xinntao/Real-ESRGAN)](https://github.com/xinntao/Real-ESRGAN/issues)
10
+ [![Closed issue](https://img.shields.io/github/issues-closed/xinntao/Real-ESRGAN)](https://github.com/xinntao/Real-ESRGAN/issues)
11
+ [![LICENSE](https://img.shields.io/github/license/xinntao/Real-ESRGAN.svg)](https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE)
12
+ [![python lint](https://github.com/xinntao/Real-ESRGAN/actions/workflows/pylint.yml/badge.svg)](https://github.com/xinntao/Real-ESRGAN/blob/master/.github/workflows/pylint.yml)
13
+ [![Publish-pip](https://github.com/xinntao/Real-ESRGAN/actions/workflows/publish-pip.yml/badge.svg)](https://github.com/xinntao/Real-ESRGAN/blob/master/.github/workflows/publish-pip.yml)
14
+
15
+ :fire: 更新动漫视频的小模型 **RealESRGAN AnimeVideo-v3**. 更多信息在 [[动漫视频模型介绍](docs/anime_video_model.md)] 和 [[比较](docs/anime_comparisons_CN.md)] 中.
16
+
17
+ 1. Real-ESRGAN的[Colab Demo](https://colab.research.google.com/drive/1k2Zod6kSHEvraybHl50Lys0LerhyTMCo?usp=sharing) | Real-ESRGAN**动漫视频** 的[Colab Demo](https://colab.research.google.com/drive/1yNl9ORUxxlL4N0keJa2SEPB61imPQd1B?usp=sharing)
18
+ 2. **支持Intel/AMD/Nvidia显卡**的绿色版exe文件: [Windows版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-windows.zip) / [Linux版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip) / [macOS版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-macos.zip),详情请移步[这里](#便携版(绿色版)可执行文件)。NCNN的实现在 [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan)。
19
+
20
+ Real-ESRGAN 的目标是开发出**实用的图像/视频修复算法**。<br>
21
+ 我们在 ESRGAN 的基础上使用纯合成的数据来进行训练,以使其能被应用于实际的图片修复的场景(顾名思义:Real-ESRGAN)。
22
+
23
+ :art: Real-ESRGAN 需要,也很欢迎你的贡献,如新功能、模型、bug修复、建议、维护等等。详情可以查看[CONTRIBUTING.md](docs/CONTRIBUTING.md),所有的贡献者都会被列在[此处](README_CN.md#hugs-感谢)。
24
+
25
+ :milky_way: 感谢大家提供了很好的反馈。这些反馈会逐步更新在 [这个文档](docs/feedback.md)。
26
+
27
+ :question: 常见的问题可以在[FAQ.md](docs/FAQ.md)中找到答案。(好吧,现在还是空白的=-=||)
28
+
29
+ ---
30
+
31
+ 如果 Real-ESRGAN 对你有帮助,可以给本项目一个 Star :star: ,或者推荐给你的朋友们,谢谢!:blush: <br/>
32
+ 其他推荐的项目:<br/>
33
+ :arrow_forward: [GFPGAN](https://github.com/TencentARC/GFPGAN): 实用的人脸复原算法 <br>
34
+ :arrow_forward: [BasicSR](https://github.com/xinntao/BasicSR): 开源的图像和视频工具箱<br>
35
+ :arrow_forward: [facexlib](https://github.com/xinntao/facexlib): 提供与人脸相关的工具箱<br>
36
+ :arrow_forward: [HandyView](https://github.com/xinntao/HandyView): 基于PyQt5的图片查看器,方便查看以及比较 <br>
37
+
38
+ ---
39
+
40
+ <!---------------------------------- Updates --------------------------->
41
+ <details>
42
+ <summary>🚩<b>更新</b></summary>
43
+
44
+ - ✅ 更新动漫视频的小模型 **RealESRGAN AnimeVideo-v3**. 更多信息在 [anime video models](docs/anime_video_model.md) 和 [comparisons](docs/anime_comparisons.md)中.
45
+ - ✅ 添加了针对动漫视频的小模型, 更多信息在 [anime video models](docs/anime_video_model.md) 中.
46
+ - ✅ 添加了ncnn 实现:[Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan).
47
+ - ✅ 添加了 [*RealESRGAN_x4plus_anime_6B.pth*](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth),对二次元图片进行了优化,并减少了model的大小。详情 以及 与[waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan)的对比请查看[**anime_model.md**](docs/anime_model.md)
48
+ - ✅支持用户在自己的数据上进行微调 (finetune):[详情](docs/Training.md#Finetune-Real-ESRGAN-on-your-own-dataset)
49
+ - ✅ 支持使用[GFPGAN](https://github.com/TencentARC/GFPGAN)**增强人脸**
50
+ - ✅ 通过[Gradio](https://github.com/gradio-app/gradio)添加到了[Huggingface Spaces](https://huggingface.co/spaces)(一个机器学习应用的在线平台):[Gradio在线版](https://huggingface.co/spaces/akhaliq/Real-ESRGAN)。感谢[@AK391](https://github.com/AK391)
51
+ - ✅ 支持任意比例的缩放:`--outscale`(实际上使用`LANCZOS4`来更进一步调整输出图像的尺寸)。添加了*RealESRGAN_x2plus.pth*模型
52
+ - ✅ [推断脚本](inference_realesrgan.py)支持: 1) 分块处理**tile**; 2) 带**alpha通道**的图像; 3) **灰色**图像; 4) **16-bit**图像.
53
+ - ✅ 训练代码已经发布,具体做法可查看:[Training.md](docs/Training.md)。
54
+
55
+ </details>
56
+
57
+ <!---------------------------------- Projects that use Real-ESRGAN --------------------------->
58
+ <details>
59
+ <summary>🧩<b>使用Real-ESRGAN的项目</b></summary>
60
+
61
+ &nbsp;&nbsp;&nbsp;&nbsp;👋 如果你开发/使用/集成了Real-ESRGAN, 欢迎联系我添加
62
+
63
+ - NCNN-Android: [RealSR-NCNN-Android](https://github.com/tumuyan/RealSR-NCNN-Android) by [tumuyan](https://github.com/tumuyan)
64
+ - VapourSynth: [vs-realesrgan](https://github.com/HolyWu/vs-realesrgan) by [HolyWu](https://github.com/HolyWu)
65
+ - NCNN: [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan)
66
+
67
+ &nbsp;&nbsp;&nbsp;&nbsp;**易用的图形界面**
68
+
69
+ - [Waifu2x-Extension-GUI](https://github.com/AaronFeng753/Waifu2x-Extension-GUI) by [AaronFeng753](https://github.com/AaronFeng753)
70
+ - [Squirrel-RIFE](https://github.com/Justin62628/Squirrel-RIFE) by [Justin62628](https://github.com/Justin62628)
71
+ - [Real-GUI](https://github.com/scifx/Real-GUI) by [scifx](https://github.com/scifx)
72
+ - [Real-ESRGAN_GUI](https://github.com/net2cn/Real-ESRGAN_GUI) by [net2cn](https://github.com/net2cn)
73
+ - [Real-ESRGAN-EGUI](https://github.com/WGzeyu/Real-ESRGAN-EGUI) by [WGzeyu](https://github.com/WGzeyu)
74
+ - [anime_upscaler](https://github.com/shangar21/anime_upscaler) by [shangar21](https://github.com/shangar21)
75
+ - [RealESRGAN-GUI](https://github.com/Baiyuetribe/paper2gui/blob/main/Video%20Super%20Resolution/RealESRGAN-GUI.md) by [Baiyuetribe](https://github.com/Baiyuetribe)
76
+
77
+ </details>
78
+
79
+ <details>
80
+ <summary>👀<b>Demo视频(B站)</b></summary>
81
+
82
+ - [大闹天宫片段](https://www.bilibili.com/video/BV1ja41117zb)
83
+
84
+ </details>
85
+
86
+ ### :book: Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
87
+
88
+ > [[论文](https://arxiv.org/abs/2107.10833)] &emsp; [项目主页] &emsp; [[YouTube 视频](https://www.youtube.com/watch?v=fxHWoDSSvSc)] &emsp; [[B站视频](https://www.bilibili.com/video/BV1H34y1m7sS/)] &emsp; [[Poster](https://xinntao.github.io/projects/RealESRGAN_src/RealESRGAN_poster.pdf)] &emsp; [[PPT](https://docs.google.com/presentation/d/1QtW6Iy8rm8rGLsJ0Ldti6kP-7Qyzy6XL/edit?usp=sharing&ouid=109799856763657548160&rtpof=true&sd=true)]<br>
89
+ > [Xintao Wang](https://xinntao.github.io/), Liangbin Xie, [Chao Dong](https://scholar.google.com.hk/citations?user=OSDCB0UAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en) <br>
90
+ > Tencent ARC Lab; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
91
+
92
+ <p align="center">
93
+ <img src="assets/teaser.jpg">
94
+ </p>
95
+
96
+ ---
97
+
98
+ 我们提供了一套训练好的模型(*RealESRGAN_x4plus.pth*),可以进行4倍的超分辨率。<br>
99
+ **现在的 Real-ESRGAN 还是有几率失败的,因为现实生活的降质过程比较复杂。**<br>
100
+ 而且,本项目对**人脸以及文字之类**的效果还不是太好,但是我们会持续进行优化的。<br>
101
+
102
+ Real-ESRGAN 将会被长期支持,我会在空闲的时间中持续维护更新。
103
+
104
+ 这些是未来计划的几个新功能:
105
+
106
+ - [ ] 优化人脸
107
+ - [ ] 优化文字
108
+ - [x] 优化动画图像
109
+ - [ ] 支持更多的超分辨率比例
110
+ - [ ] 可调节的复原
111
+
112
+ 如果你有好主意或需求,欢迎在 issue 或 discussion 中提出。<br/>
113
+ 如果你有一些 Real-ESRGAN 中有问题的照片,你也可以在 issue 或者 discussion 中发出来。我会留意(但是不一定能解决:stuck_out_tongue:)。如果有必要的话,我还会专门开一页来记录那些有待解决的图像。
114
+
115
+ ---
116
+
117
+ ### 便携版(绿色版)可执行文件
118
+
119
+ 你可以下载**支持Intel/AMD/Nvidia显卡**的绿色版exe文件: [Windows版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-windows.zip) / [Linux版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip) / [macOS版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-macos.zip)。
120
+
121
+ 绿色版指的是这些exe你可以直接运行(放U盘里拷走都没问题),因为里面已经有所需的文件和模型了。它不需要 CUDA 或者 PyTorch运行环境。<br>
122
+
123
+ 你可以通过下面这个命令来运行(Windows版本的例子,更多信息请查看对应版本的README.md):
124
+
125
+ ```bash
126
+ ./realesrgan-ncnn-vulkan.exe -i 输入图像.jpg -o 输出图像.png -n 模型名字
127
+ ```
128
+
129
+ 我们提供了五种模型:
130
+
131
+ 1. realesrgan-x4plus(默认)
132
+ 2. reaesrnet-x4plus
133
+ 3. realesrgan-x4plus-anime(针对动漫插画图像优化,有更小的体积)
134
+ 4. realesr-animevideov3 (针对动漫视频)
135
+
136
+ 你可以通过`-n`参数来使用其他模型,例如`./realesrgan-ncnn-vulkan.exe -i 二次元图片.jpg -o 二刺螈图片.png -n realesrgan-x4plus-anime`
137
+
138
+ ### 可执行文件的用法
139
+
140
+ 1. 更多细节可以参考 [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan#computer-usages).
141
+ 2. 注意:可执行文件并没有支持 python 脚本 `inference_realesrgan.py` 中所有的功能,比如 `outscale` 选项) .
142
+
143
+ ```console
144
+ Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...
145
+
146
+ -h show this help
147
+ -i input-path input image path (jpg/png/webp) or directory
148
+ -o output-path output image path (jpg/png/webp) or directory
149
+ -s scale upscale ratio (can be 2, 3, 4. default=4)
150
+ -t tile-size tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
151
+ -m model-path folder path to the pre-trained models. default=models
152
+ -n model-name model name (default=realesr-animevideov3, can be realesr-animevideov3 | realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
153
+ -g gpu-id gpu device to use (default=auto) can be 0,1,2 for multi-gpu
154
+ -j load:proc:save thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
155
+ -x enable tta mode"
156
+ -f format output image format (jpg/png/webp, default=ext/png)
157
+ -v verbose output
158
+ ```
159
+
160
+ 由于这些exe文件会把图像分成几个板块,然后来分别进行处理,再合成导出,输出的图像可能会有一点割裂感(而且可能跟PyTorch的输出不太一样)
161
+
162
+ ---
163
+
164
+ ## :wrench: 依赖以及安装
165
+
166
+ - Python >= 3.7 (推荐使用[Anaconda](https://www.anaconda.com/download/#linux)或[Miniconda](https://docs.conda.io/en/latest/miniconda.html))
167
+ - [PyTorch >= 1.7](https://pytorch.org/)
168
+
169
+ #### 安装
170
+
171
+ 1. 把项目克隆到本地
172
+
173
+ ```bash
174
+ git clone https://github.com/xinntao/Real-ESRGAN.git
175
+ cd Real-ESRGAN
176
+ ```
177
+
178
+ 2. 安装各种依赖
179
+
180
+ ```bash
181
+ # 安装 basicsr - https://github.com/xinntao/BasicSR
182
+ # 我们使用BasicSR来训练以及推断
183
+ pip install basicsr
184
+ # facexlib和gfpgan是用来增强人脸的
185
+ pip install facexlib
186
+ pip install gfpgan
187
+ pip install -r requirements.txt
188
+ python setup.py develop
189
+ ```
190
+
191
+ ## :zap: 快速上手
192
+
193
+ ### 普通图片
194
+
195
+ 下载我们训练好的模型: [RealESRGAN_x4plus.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth)
196
+
197
+ ```bash
198
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P weights
199
+ ```
200
+
201
+ 推断!
202
+
203
+ ```bash
204
+ python inference_realesrgan.py -n RealESRGAN_x4plus -i inputs --face_enhance
205
+ ```
206
+
207
+ 结果在`results`文件夹
208
+
209
+ ### 动画图片
210
+
211
+ <p align="center">
212
+ <img src="https://raw.githubusercontent.com/xinntao/public-figures/master/Real-ESRGAN/cmp_realesrgan_anime_1.png">
213
+ </p>
214
+
215
+ 训练好的模型: [RealESRGAN_x4plus_anime_6B](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth)<br>
216
+ 有关[waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan)的更多信息和对比在[**anime_model.md**](docs/anime_model.md)中。
217
+
218
+ ```bash
219
+ # 下载模型
220
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P weights
221
+ # 推断
222
+ python inference_realesrgan.py -n RealESRGAN_x4plus_anime_6B -i inputs
223
+ ```
224
+
225
+ 结果在`results`文件夹
226
+
227
+ ### Python 脚本的用法
228
+
229
+ 1. 虽然你使用了 X4 模型,但是你可以 **输出任意尺寸比例的图片**,只要实用了 `outscale` 参数. 程序会进一步对模型的输出图像进行缩放。
230
+
231
+ ```console
232
+ Usage: python inference_realesrgan.py -n RealESRGAN_x4plus -i infile -o outfile [options]...
233
+
234
+ A common command: python inference_realesrgan.py -n RealESRGAN_x4plus -i infile --outscale 3.5 --face_enhance
235
+
236
+ -h show this help
237
+ -i --input Input image or folder. Default: inputs
238
+ -o --output Output folder. Default: results
239
+ -n --model_name Model name. Default: RealESRGAN_x4plus
240
+ -s, --outscale The final upsampling scale of the image. Default: 4
241
+ --suffix Suffix of the restored image. Default: out
242
+ -t, --tile Tile size, 0 for no tile during testing. Default: 0
243
+ --face_enhance Whether to use GFPGAN to enhance face. Default: False
244
+ --fp32 Whether to use half precision during inference. Default: False
245
+ --ext Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
246
+ ```
247
+
248
+ ## :european_castle: 模型库
249
+
250
+ 请参见 [docs/model_zoo.md](docs/model_zoo.md)
251
+
252
+ ## :computer: 训练,在你的数据上微调(Fine-tune)
253
+
254
+ 这里有一份详细的指南:[Training.md](docs/Training.md).
255
+
256
+ ## BibTeX 引用
257
+
258
+ @Article{wang2021realesrgan,
259
+ title={Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data},
260
+ author={Xintao Wang and Liangbin Xie and Chao Dong and Ying Shan},
261
+ journal={arXiv:2107.10833},
262
+ year={2021}
263
+ }
264
+
265
+ ## :e-mail: 联系我们
266
+
267
+ 如果你有任何问题,请通过 `[email protected]` 或 `[email protected]` 联系我们。
268
+
269
+ ## :hugs: 感谢
270
+
271
+ 感谢所有的贡献者大大们~
272
+
273
+ - [AK391](https://github.com/AK391): 通过[Gradio](https://github.com/gradio-app/gradio)添加到了[Huggingface Spaces](https://huggingface.co/spaces)(一个机器学习应用的在线平台):[Gradio在线版](https://huggingface.co/spaces/akhaliq/Real-ESRGAN)。
274
+ - [Asiimoviet](https://github.com/Asiimoviet): 把 README.md 文档 翻译成了中文。
275
+ - [2ji3150](https://github.com/2ji3150): 感谢详尽并且富有价值的[反馈、建议](https://github.com/xinntao/Real-ESRGAN/issues/131).
276
+ - [Jared-02](https://github.com/Jared-02): 把 Training.md 文档 翻译成了中文。
VERSION ADDED
@@ -0,0 +1 @@
 
 
1
+ 0.3.0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import inference_realesrgan as ir
4
+
5
+ st.set_page_config(
6
+ page_title="Image Enhancer",
7
+ page_icon="🧊",
8
+ layout="wide",
9
+ initial_sidebar_state="expanded",
10
+ )
11
+
12
+ st.header('Image Optimization Using Real-ESRGAN')
13
+ upload_img = st.file_uploader(label="Upload Your Image",type=['jpg','png','jpeg'])
14
+
15
+ col1,col2 = st.columns(2)
16
+
17
+ if upload_img is not None:
18
+ image = Image.open(upload_img)
19
+
20
+ col1, col2 = st.columns( [0.5, 0.5])
21
+ with col1:
22
+ st.markdown('<p style="text-align: center;">Before</p>',unsafe_allow_html=True)
23
+ st.image(image,width=300)
24
+
25
+ with col2:
26
+ with st.spinner('Processing...Seat Back And Relax.'):
27
+ st.markdown('<p style="text-align: center;">After</p>',unsafe_allow_html=True)
28
+ result = ir.main(input='C:\\Users\\SUMIT\\Desktop\\IO\\Real-ESRGAN\\inputs\\image-31.png', outscale=3.5,fp32= '--fp32', face_enhance='True', ext='auto',output= 'results')
29
+
30
+ st.image(result,width=300)
assets/realesrgan_logo.png ADDED
assets/realesrgan_logo_ai.png ADDED
assets/realesrgan_logo_av.png ADDED
assets/realesrgan_logo_gi.png ADDED
assets/realesrgan_logo_gv.png ADDED
assets/teaser-text.png ADDED
assets/teaser.jpg ADDED
cog.yaml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is used for constructing replicate env
2
+ image: "r8.im/tencentarc/realesrgan"
3
+
4
+ build:
5
+ gpu: true
6
+ python_version: "3.8"
7
+ system_packages:
8
+ - "libgl1-mesa-glx"
9
+ - "libglib2.0-0"
10
+ python_packages:
11
+ - "torch==1.7.1"
12
+ - "torchvision==0.8.2"
13
+ - "numpy==1.21.1"
14
+ - "lmdb==1.2.1"
15
+ - "opencv-python==4.5.3.56"
16
+ - "PyYAML==5.4.1"
17
+ - "tqdm==4.62.2"
18
+ - "yapf==0.31.0"
19
+ - "basicsr==1.4.2"
20
+ - "facexlib==0.2.5"
21
+
22
+ predict: "cog_predict.py:Predictor"
cog_predict.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ # This file is used for deploying replicate models
3
+ # running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0
4
+ # push: cog push r8.im/xinntao/realesrgan
5
+
6
+ import os
7
+
8
+ os.system('pip install gfpgan')
9
+ os.system('python setup.py develop')
10
+
11
+ import cv2
12
+ import shutil
13
+ import tempfile
14
+ import torch
15
+ from basicsr.archs.rrdbnet_arch import RRDBNet
16
+ from basicsr.archs.srvgg_arch import SRVGGNetCompact
17
+
18
+ from realesrgan.utils import RealESRGANer
19
+
20
+ try:
21
+ from cog import BasePredictor, Input, Path
22
+ from gfpgan import GFPGANer
23
+ except Exception:
24
+ print('please install cog and realesrgan package')
25
+
26
+
27
+ class Predictor(BasePredictor):
28
+
29
+ def setup(self):
30
+ os.makedirs('output', exist_ok=True)
31
+ # download weights
32
+ if not os.path.exists('weights/realesr-general-x4v3.pth'):
33
+ os.system(
34
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights'
35
+ )
36
+ if not os.path.exists('weights/GFPGANv1.4.pth'):
37
+ os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights')
38
+ if not os.path.exists('weights/RealESRGAN_x4plus.pth'):
39
+ os.system(
40
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights'
41
+ )
42
+ if not os.path.exists('weights/RealESRGAN_x4plus_anime_6B.pth'):
43
+ os.system(
44
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights'
45
+ )
46
+ if not os.path.exists('weights/realesr-animevideov3.pth'):
47
+ os.system(
48
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights'
49
+ )
50
+
51
+ def choose_model(self, scale, version, tile=0):
52
+ half = True if torch.cuda.is_available() else False
53
+ if version == 'General - RealESRGANplus':
54
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
55
+ model_path = 'weights/RealESRGAN_x4plus.pth'
56
+ self.upsampler = RealESRGANer(
57
+ scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
58
+ elif version == 'General - v3':
59
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
60
+ model_path = 'weights/realesr-general-x4v3.pth'
61
+ self.upsampler = RealESRGANer(
62
+ scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
63
+ elif version == 'Anime - anime6B':
64
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
65
+ model_path = 'weights/RealESRGAN_x4plus_anime_6B.pth'
66
+ self.upsampler = RealESRGANer(
67
+ scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
68
+ elif version == 'AnimeVideo - v3':
69
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
70
+ model_path = 'weights/realesr-animevideov3.pth'
71
+ self.upsampler = RealESRGANer(
72
+ scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
73
+
74
+ self.face_enhancer = GFPGANer(
75
+ model_path='weights/GFPGANv1.4.pth',
76
+ upscale=scale,
77
+ arch='clean',
78
+ channel_multiplier=2,
79
+ bg_upsampler=self.upsampler)
80
+
81
+ def predict(
82
+ self,
83
+ img: Path = Input(description='Input'),
84
+ version: str = Input(
85
+ description='RealESRGAN version. Please see [Readme] below for more descriptions',
86
+ choices=['General - RealESRGANplus', 'General - v3', 'Anime - anime6B', 'AnimeVideo - v3'],
87
+ default='General - v3'),
88
+ scale: float = Input(description='Rescaling factor', default=2),
89
+ face_enhance: bool = Input(
90
+ description='Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes', default=False),
91
+ tile: int = Input(
92
+ description=
93
+ 'Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200',
94
+ default=0)
95
+ ) -> Path:
96
+ if tile <= 100 or tile is None:
97
+ tile = 0
98
+ print(f'img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}.')
99
+ try:
100
+ extension = os.path.splitext(os.path.basename(str(img)))[1]
101
+ img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
102
+ if len(img.shape) == 3 and img.shape[2] == 4:
103
+ img_mode = 'RGBA'
104
+ elif len(img.shape) == 2:
105
+ img_mode = None
106
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
107
+ else:
108
+ img_mode = None
109
+
110
+ h, w = img.shape[0:2]
111
+ if h < 300:
112
+ img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
113
+
114
+ self.choose_model(scale, version, tile)
115
+
116
+ try:
117
+ if face_enhance:
118
+ _, _, output = self.face_enhancer.enhance(
119
+ img, has_aligned=False, only_center_face=False, paste_back=True)
120
+ else:
121
+ output, _ = self.upsampler.enhance(img, outscale=scale)
122
+ except RuntimeError as error:
123
+ print('Error', error)
124
+ print('If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.')
125
+
126
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
127
+ extension = 'png'
128
+ # save_path = f'output/out.{extension}'
129
+ # cv2.imwrite(save_path, output)
130
+ out_path = Path(tempfile.mkdtemp()) / f'out.{extension}'
131
+ cv2.imwrite(str(out_path), output)
132
+ except Exception as error:
133
+ print('global exception: ', error)
134
+ finally:
135
+ clean_folder('output')
136
+ return out_path
137
+
138
+
139
+ def clean_folder(folder):
140
+ for filename in os.listdir(folder):
141
+ file_path = os.path.join(folder, filename)
142
+ try:
143
+ if os.path.isfile(file_path) or os.path.islink(file_path):
144
+ os.unlink(file_path)
145
+ elif os.path.isdir(file_path):
146
+ shutil.rmtree(file_path)
147
+ except Exception as e:
148
+ print(f'Failed to delete {file_path}. Reason: {e}')
docs/CONTRIBUTING.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributing to Real-ESRGAN
2
+
3
+ :art: Real-ESRGAN needs your contributions. Any contributions are welcome, such as new features/models/typo fixes/suggestions/maintenance, *etc*. See [CONTRIBUTING.md](docs/CONTRIBUTING.md). All contributors are list [here](README.md#hugs-acknowledgement).
4
+
5
+ We like open-source and want to develop practical algorithms for general image restoration. However, individual strength is limited. So, any kinds of contributions are welcome, such as:
6
+
7
+ - New features
8
+ - New models (your fine-tuned models)
9
+ - Bug fixes
10
+ - Typo fixes
11
+ - Suggestions
12
+ - Maintenance
13
+ - Documents
14
+ - *etc*
15
+
16
+ ## Workflow
17
+
18
+ 1. Fork and pull the latest Real-ESRGAN repository
19
+ 1. Checkout a new branch (do not use master branch for PRs)
20
+ 1. Commit your changes
21
+ 1. Create a PR
22
+
23
+ **Note**:
24
+
25
+ 1. Please check the code style and linting
26
+ 1. The style configuration is specified in [setup.cfg](setup.cfg)
27
+ 1. If you use VSCode, the settings are configured in [.vscode/settings.json](.vscode/settings.json)
28
+ 1. Strongly recommend using `pre-commit hook`. It will check your code style and linting before your commit.
29
+ 1. In the root path of project folder, run `pre-commit install`
30
+ 1. The pre-commit configuration is listed in [.pre-commit-config.yaml](.pre-commit-config.yaml)
31
+ 1. Better to [open a discussion](https://github.com/xinntao/Real-ESRGAN/discussions) before large changes.
32
+ 1. Welcome to discuss :sunglasses:. I will try my best to join the discussion.
33
+
34
+ ## TODO List
35
+
36
+ :zero: The most straightforward way of improving model performance is to fine-tune on some specific datasets.
37
+
38
+ Here are some TODOs:
39
+
40
+ - [ ] optimize for human faces
41
+ - [ ] optimize for texts
42
+ - [ ] support controllable restoration strength
43
+
44
+ :one: There are also [several issues](https://github.com/xinntao/Real-ESRGAN/issues) that require helpers to improve. If you can help, please let me know :smile:
docs/FAQ.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # FAQ
2
+
3
+ 1. **Q: How to select models?**<br>
4
+ A: Please refer to [docs/model_zoo.md](docs/model_zoo.md)
5
+
6
+ 1. **Q: Can `face_enhance` be used for anime images/animation videos?**<br>
7
+ A: No, it can only be used for real faces. It is recommended not to use this option for anime images/animation videos to save GPU memory.
8
+
9
+ 1. **Q: Error "slow_conv2d_cpu" not implemented for 'Half'**<br>
10
+ A: In order to save GPU memory consumption and speed up inference, Real-ESRGAN uses half precision (fp16) during inference by default. However, some operators for half inference are not implemented in CPU mode. You need to add **`--fp32` option** for the commands. For example, `python inference_realesrgan.py -n RealESRGAN_x4plus.pth -i inputs --fp32`.
docs/Training.md ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # :computer: How to Train/Finetune Real-ESRGAN
2
+
3
+ - [Train Real-ESRGAN](#train-real-esrgan)
4
+ - [Overview](#overview)
5
+ - [Dataset Preparation](#dataset-preparation)
6
+ - [Train Real-ESRNet](#Train-Real-ESRNet)
7
+ - [Train Real-ESRGAN](#Train-Real-ESRGAN)
8
+ - [Finetune Real-ESRGAN on your own dataset](#Finetune-Real-ESRGAN-on-your-own-dataset)
9
+ - [Generate degraded images on the fly](#Generate-degraded-images-on-the-fly)
10
+ - [Use paired training data](#use-your-own-paired-data)
11
+
12
+ [English](Training.md) **|** [简体中文](Training_CN.md)
13
+
14
+ ## Train Real-ESRGAN
15
+
16
+ ### Overview
17
+
18
+ The training has been divided into two stages. These two stages have the same data synthesis process and training pipeline, except for the loss functions. Specifically,
19
+
20
+ 1. We first train Real-ESRNet with L1 loss from the pre-trained model ESRGAN.
21
+ 1. We then use the trained Real-ESRNet model as an initialization of the generator, and train the Real-ESRGAN with a combination of L1 loss, perceptual loss and GAN loss.
22
+
23
+ ### Dataset Preparation
24
+
25
+ We use DF2K (DIV2K and Flickr2K) + OST datasets for our training. Only HR images are required. <br>
26
+ You can download from :
27
+
28
+ 1. DIV2K: http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip
29
+ 2. Flickr2K: https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar
30
+ 3. OST: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/datasets/OST_dataset.zip
31
+
32
+ Here are steps for data preparation.
33
+
34
+ #### Step 1: [Optional] Generate multi-scale images
35
+
36
+ For the DF2K dataset, we use a multi-scale strategy, *i.e.*, we downsample HR images to obtain several Ground-Truth images with different scales. <br>
37
+ You can use the [scripts/generate_multiscale_DF2K.py](scripts/generate_multiscale_DF2K.py) script to generate multi-scale images. <br>
38
+ Note that this step can be omitted if you just want to have a fast try.
39
+
40
+ ```bash
41
+ python scripts/generate_multiscale_DF2K.py --input datasets/DF2K/DF2K_HR --output datasets/DF2K/DF2K_multiscale
42
+ ```
43
+
44
+ #### Step 2: [Optional] Crop to sub-images
45
+
46
+ We then crop DF2K images into sub-images for faster IO and processing.<br>
47
+ This step is optional if your IO is enough or your disk space is limited.
48
+
49
+ You can use the [scripts/extract_subimages.py](scripts/extract_subimages.py) script. Here is the example:
50
+
51
+ ```bash
52
+ python scripts/extract_subimages.py --input datasets/DF2K/DF2K_multiscale --output datasets/DF2K/DF2K_multiscale_sub --crop_size 400 --step 200
53
+ ```
54
+
55
+ #### Step 3: Prepare a txt for meta information
56
+
57
+ You need to prepare a txt file containing the image paths. The following are some examples in `meta_info_DF2Kmultiscale+OST_sub.txt` (As different users may have different sub-images partitions, this file is not suitable for your purpose and you need to prepare your own txt file):
58
+
59
+ ```txt
60
+ DF2K_HR_sub/000001_s001.png
61
+ DF2K_HR_sub/000001_s002.png
62
+ DF2K_HR_sub/000001_s003.png
63
+ ...
64
+ ```
65
+
66
+ You can use the [scripts/generate_meta_info.py](scripts/generate_meta_info.py) script to generate the txt file. <br>
67
+ You can merge several folders into one meta_info txt. Here is the example:
68
+
69
+ ```bash
70
+ python scripts/generate_meta_info.py --input datasets/DF2K/DF2K_HR datasets/DF2K/DF2K_multiscale --root datasets/DF2K datasets/DF2K --meta_info datasets/DF2K/meta_info/meta_info_DF2Kmultiscale.txt
71
+ ```
72
+
73
+ ### Train Real-ESRNet
74
+
75
+ 1. Download pre-trained model [ESRGAN](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth) into `experiments/pretrained_models`.
76
+ ```bash
77
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth -P experiments/pretrained_models
78
+ ```
79
+ 1. Modify the content in the option file `options/train_realesrnet_x4plus.yml` accordingly:
80
+ ```yml
81
+ train:
82
+ name: DF2K+OST
83
+ type: RealESRGANDataset
84
+ dataroot_gt: datasets/DF2K # modify to the root path of your folder
85
+ meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt
86
+ io_backend:
87
+ type: disk
88
+ ```
89
+ 1. If you want to perform validation during training, uncomment those lines and modify accordingly:
90
+ ```yml
91
+ # Uncomment these for validation
92
+ # val:
93
+ # name: validation
94
+ # type: PairedImageDataset
95
+ # dataroot_gt: path_to_gt
96
+ # dataroot_lq: path_to_lq
97
+ # io_backend:
98
+ # type: disk
99
+
100
+ ...
101
+
102
+ # Uncomment these for validation
103
+ # validation settings
104
+ # val:
105
+ # val_freq: !!float 5e3
106
+ # save_img: True
107
+
108
+ # metrics:
109
+ # psnr: # metric name, can be arbitrary
110
+ # type: calculate_psnr
111
+ # crop_border: 4
112
+ # test_y_channel: false
113
+ ```
114
+ 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training:
115
+ ```bash
116
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
117
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug
118
+ ```
119
+
120
+ Train with **a single GPU** in the *debug* mode:
121
+ ```bash
122
+ python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --debug
123
+ ```
124
+ 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
125
+ ```bash
126
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
127
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume
128
+ ```
129
+
130
+ Train with **a single GPU**:
131
+ ```bash
132
+ python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --auto_resume
133
+ ```
134
+
135
+ ### Train Real-ESRGAN
136
+
137
+ 1. After the training of Real-ESRNet, you now have the file `experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/model/net_g_1000000.pth`. If you need to specify the pre-trained path to other files, modify the `pretrain_network_g` value in the option file `train_realesrgan_x4plus.yml`.
138
+ 1. Modify the option file `train_realesrgan_x4plus.yml` accordingly. Most modifications are similar to those listed above.
139
+ 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training:
140
+ ```bash
141
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
142
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug
143
+ ```
144
+
145
+ Train with **a single GPU** in the *debug* mode:
146
+ ```bash
147
+ python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --debug
148
+ ```
149
+ 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
150
+ ```bash
151
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
152
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume
153
+ ```
154
+
155
+ Train with **a single GPU**:
156
+ ```bash
157
+ python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --auto_resume
158
+ ```
159
+
160
+ ## Finetune Real-ESRGAN on your own dataset
161
+
162
+ You can finetune Real-ESRGAN on your own dataset. Typically, the fine-tuning process can be divided into two cases:
163
+
164
+ 1. [Generate degraded images on the fly](#Generate-degraded-images-on-the-fly)
165
+ 1. [Use your own **paired** data](#Use-paired-training-data)
166
+
167
+ ### Generate degraded images on the fly
168
+
169
+ Only high-resolution images are required. The low-quality images are generated with the degradation process described in Real-ESRGAN during training.
170
+
171
+ **1. Prepare dataset**
172
+
173
+ See [this section](#dataset-preparation) for more details.
174
+
175
+ **2. Download pre-trained models**
176
+
177
+ Download pre-trained models into `experiments/pretrained_models`.
178
+
179
+ - *RealESRGAN_x4plus.pth*:
180
+ ```bash
181
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models
182
+ ```
183
+
184
+ - *RealESRGAN_x4plus_netD.pth*:
185
+ ```bash
186
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models
187
+ ```
188
+
189
+ **3. Finetune**
190
+
191
+ Modify [options/finetune_realesrgan_x4plus.yml](options/finetune_realesrgan_x4plus.yml) accordingly, especially the `datasets` part:
192
+
193
+ ```yml
194
+ train:
195
+ name: DF2K+OST
196
+ type: RealESRGANDataset
197
+ dataroot_gt: datasets/DF2K # modify to the root path of your folder
198
+ meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt
199
+ io_backend:
200
+ type: disk
201
+ ```
202
+
203
+ We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
204
+
205
+ ```bash
206
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
207
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --launcher pytorch --auto_resume
208
+ ```
209
+
210
+ Finetune with **a single GPU**:
211
+ ```bash
212
+ python realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --auto_resume
213
+ ```
214
+
215
+ ### Use your own paired data
216
+
217
+ You can also finetune RealESRGAN with your own paired data. It is more similar to fine-tuning ESRGAN.
218
+
219
+ **1. Prepare dataset**
220
+
221
+ Assume that you already have two folders:
222
+
223
+ - **gt folder** (Ground-truth, high-resolution images): *datasets/DF2K/DIV2K_train_HR_sub*
224
+ - **lq folder** (Low quality, low-resolution images): *datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub*
225
+
226
+ Then, you can prepare the meta_info txt file using the script [scripts/generate_meta_info_pairdata.py](scripts/generate_meta_info_pairdata.py):
227
+
228
+ ```bash
229
+ python scripts/generate_meta_info_pairdata.py --input datasets/DF2K/DIV2K_train_HR_sub datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub --meta_info datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt
230
+ ```
231
+
232
+ **2. Download pre-trained models**
233
+
234
+ Download pre-trained models into `experiments/pretrained_models`.
235
+
236
+ - *RealESRGAN_x4plus.pth*
237
+ ```bash
238
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models
239
+ ```
240
+
241
+ - *RealESRGAN_x4plus_netD.pth*
242
+ ```bash
243
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models
244
+ ```
245
+
246
+ **3. Finetune**
247
+
248
+ Modify [options/finetune_realesrgan_x4plus_pairdata.yml](options/finetune_realesrgan_x4plus_pairdata.yml) accordingly, especially the `datasets` part:
249
+
250
+ ```yml
251
+ train:
252
+ name: DIV2K
253
+ type: RealESRGANPairedDataset
254
+ dataroot_gt: datasets/DF2K # modify to the root path of your folder
255
+ dataroot_lq: datasets/DF2K # modify to the root path of your folder
256
+ meta_info: datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt # modify to your own generate meta info txt
257
+ io_backend:
258
+ type: disk
259
+ ```
260
+
261
+ We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
262
+
263
+ ```bash
264
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
265
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --launcher pytorch --auto_resume
266
+ ```
267
+
268
+ Finetune with **a single GPU**:
269
+ ```bash
270
+ python realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --auto_resume
271
+ ```
docs/Training_CN.md ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # :computer: 如何训练/微调 Real-ESRGAN
2
+
3
+ - [训练 Real-ESRGAN](#训练-real-esrgan)
4
+ - [概述](#概述)
5
+ - [准备数据集](#准备数据集)
6
+ - [训练 Real-ESRNet 模型](#训练-real-esrnet-模型)
7
+ - [训练 Real-ESRGAN 模型](#训练-real-esrgan-模型)
8
+ - [用自己的数据集微调 Real-ESRGAN](#用自己的数据集微调-real-esrgan)
9
+ - [动态生成降级图像](#动态生成降级图像)
10
+ - [使用已配对的数据](#使用已配对的数据)
11
+
12
+ [English](Training.md) **|** [简体中文](Training_CN.md)
13
+
14
+ ## 训练 Real-ESRGAN
15
+
16
+ ### 概述
17
+
18
+ 训练分为两个步骤。除了 loss 函数外,这两个步骤拥有相同数据合成以及训练的一条龙流程。具体点说:
19
+
20
+ 1. 首先使用 L1 loss 训练 Real-ESRNet 模型,其中 L1 loss 来自预先训练的 ESRGAN 模型。
21
+
22
+ 2. 然后我们将 Real-ESRNet 模型作为生成器初始化,结合L1 loss、感知 loss、GAN loss 三者的参数对 Real-ESRGAN 进行训练。
23
+
24
+ ### 准备数据集
25
+
26
+ 我们使用 DF2K ( DIV2K 和 Flickr2K ) + OST 数据集进行训练。只需要HR图像!<br>
27
+ 下面是网站链接:
28
+ 1. DIV2K: http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip
29
+ 2. Flickr2K: https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar
30
+ 3. OST: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/datasets/OST_dataset.zip
31
+
32
+ 以下是数据的准备步骤。
33
+
34
+ #### 第1步:【可选】生成多尺寸图片
35
+
36
+ 针对 DF2K 数据集,我们使用多尺寸缩放策略,*换言之*,我们对 HR 图像进行下采样,就能获得多尺寸的标准参考(Ground-Truth)图像。 <br>
37
+ 您可以使用这个 [scripts/generate_multiscale_DF2K.py](scripts/generate_multiscale_DF2K.py) 脚本快速生成多尺寸的图像。<br>
38
+ 注意:如果您只想简单试试,那么可以跳过此步骤。
39
+
40
+ ```bash
41
+ python scripts/generate_multiscale_DF2K.py --input datasets/DF2K/DF2K_HR --output datasets/DF2K/DF2K_multiscale
42
+ ```
43
+
44
+ #### 第2步:【可选】裁切为子图像
45
+
46
+ 我们可以将 DF2K 图像裁切为子图像,以加快 IO 和处理速度。<br>
47
+ 如果你的 IO 够好或储存空间有限,那么此步骤是可选的。<br>
48
+
49
+ 您可以使用脚本 [scripts/extract_subimages.py](scripts/extract_subimages.py)。这是使用示例:
50
+
51
+ ```bash
52
+ python scripts/extract_subimages.py --input datasets/DF2K/DF2K_multiscale --output datasets/DF2K/DF2K_multiscale_sub --crop_size 400 --step 200
53
+ ```
54
+
55
+ #### 第3步:准备元信息 txt
56
+
57
+ 您需要准备一个包含图像路径的 txt 文件。下面是 `meta_info_DF2Kmultiscale+OST_sub.txt` 中的部分展示(由于各个用户可能有截然不同的子图像划分,这个文件不适合你的需求,你得准备自己的 txt 文件):
58
+
59
+ ```txt
60
+ DF2K_HR_sub/000001_s001.png
61
+ DF2K_HR_sub/000001_s002.png
62
+ DF2K_HR_sub/000001_s003.png
63
+ ...
64
+ ```
65
+
66
+ 你可以使用该脚本 [scripts/generate_meta_info.py](scripts/generate_meta_info.py) 生成包含图像路径的 txt 文件。<br>
67
+ 你还可以合并多个文件夹的图像路径到一个元信息(meta_info)txt。这是使用示例:
68
+
69
+ ```bash
70
+ python scripts/generate_meta_info.py --input datasets/DF2K/DF2K_HR, datasets/DF2K/DF2K_multiscale --root datasets/DF2K, datasets/DF2K --meta_info datasets/DF2K/meta_info/meta_info_DF2Kmultiscale.txt
71
+ ```
72
+
73
+ ### 训练 Real-ESRNet 模型
74
+
75
+ 1. 下载预先训练的模型 [ESRGAN](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth),放到 `experiments/pretrained_models`目录下。
76
+ ```bash
77
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth -P experiments/pretrained_models
78
+ ```
79
+ 2. 相应地修改选项文件 `options/train_realesrnet_x4plus.yml` 中的内容:
80
+ ```yml
81
+ train:
82
+ name: DF2K+OST
83
+ type: RealESRGANDataset
84
+ dataroot_gt: datasets/DF2K # 修改为你的数据集文件夹根目录
85
+ meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # 修改为你自己生成的元信息txt
86
+ io_backend:
87
+ type: disk
88
+ ```
89
+ 3. 如果你想在训练过程中执行验证,就取消注释这些内容并进行相应的修改:
90
+ ```yml
91
+ # 取消注释这些以进行验证
92
+ # val:
93
+ # name: validation
94
+ # type: PairedImageDataset
95
+ # dataroot_gt: path_to_gt
96
+ # dataroot_lq: path_to_lq
97
+ # io_backend:
98
+ # type: disk
99
+
100
+ ...
101
+
102
+ # 取消注释这些以进行验证
103
+ # 验证设置
104
+ # val:
105
+ # val_freq: !!float 5e3
106
+ # save_img: True
107
+
108
+ # metrics:
109
+ # psnr: # 指标名称,可以是任意的
110
+ # type: calculate_psnr
111
+ # crop_border: 4
112
+ # test_y_channel: false
113
+ ```
114
+ 4. 正式训练之前,你可以用 `--debug` 模式检查是否正常运行。我们用了4个GPU进行训练:
115
+ ```bash
116
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
117
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug
118
+ ```
119
+
120
+ 用 **1个GPU** 训练的 debug 模式示例:
121
+ ```bash
122
+ python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --debug
123
+ ```
124
+ 5. 正式训练开始。我们用了4个GPU进行训练。还可以使用参数 `--auto_resume` 在必要时自动恢复训练。
125
+ ```bash
126
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
127
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume
128
+ ```
129
+
130
+ 用 **1个GPU** 训练:
131
+ ```bash
132
+ python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --auto_resume
133
+ ```
134
+
135
+ ### 训练 Real-ESRGAN 模型
136
+
137
+ 1. 训练 Real-ESRNet 模型后,您得到了这个 `experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/model/net_g_1000000.pth` 文件。如果需要指定预训练路径到其他文件,请修改选项文件 `train_realesrgan_x4plus.yml` 中 `pretrain_network_g` 的值。
138
+ 1. 修改选项文件 `train_realesrgan_x4plus.yml` 的内容。大多数修改与上节提到的类似。
139
+ 1. 正式训练之前,你可以以 `--debug` 模式检查是否正常运行。我们使用了4个GPU进行训练:
140
+ ```bash
141
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
142
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug
143
+ ```
144
+
145
+ 用 **1个GPU** 训练的 debug 模式示例:
146
+ ```bash
147
+ python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --debug
148
+ ```
149
+ 1. 正式训练开始。我们使用4个GPU进行训练。还可以使用参数 `--auto_resume` 在必要时自动恢复训练。
150
+ ```bash
151
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
152
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume
153
+ ```
154
+
155
+ 用 **1个GPU** 训练:
156
+ ```bash
157
+ python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --auto_resume
158
+ ```
159
+
160
+ ## 用自己的数据集微调 Real-ESRGAN
161
+
162
+ 你可以用自己的数据集微调 Real-ESRGAN。一般地,微调(Fine-Tune)程序可以分为两种类型:
163
+
164
+ 1. [动态生成降级图像](#动态生成降级图像)
165
+ 2. [使用**已配对**的数据](#使用已配对的数据)
166
+
167
+ ### 动态生成降级图像
168
+
169
+ 只需要高分辨率图像。在训练过程中,使用 Real-ESRGAN 描述的降级模型生成低质量图像。
170
+
171
+ **1. 准备数据集**
172
+
173
+ 完整信息请参见[本节](#准备数据集)。
174
+
175
+ **2. 下载预训练模型**
176
+
177
+ 下载预先训练的模型到 `experiments/pretrained_models` 目录下。
178
+
179
+ - *RealESRGAN_x4plus.pth*:
180
+ ```bash
181
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models
182
+ ```
183
+
184
+ - *RealESRGAN_x4plus_netD.pth*:
185
+ ```bash
186
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models
187
+ ```
188
+
189
+ **3. 微调**
190
+
191
+ 修改选项文件 [options/finetune_realesrgan_x4plus.yml](options/finetune_realesrgan_x4plus.yml) ,特别是 `datasets` 部分:
192
+
193
+ ```yml
194
+ train:
195
+ name: DF2K+OST
196
+ type: RealESRGANDataset
197
+ dataroot_gt: datasets/DF2K # 修改为你的数据集文件夹根目录
198
+ meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # 修改为你自己生成的元信息txt
199
+ io_backend:
200
+ type: disk
201
+ ```
202
+
203
+ 我们使用4个GPU进行训练。还可以使用参数 `--auto_resume` 在必要时自动恢复训练。
204
+
205
+ ```bash
206
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
207
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --launcher pytorch --auto_resume
208
+ ```
209
+
210
+ 用 **1个GPU** 训练:
211
+ ```bash
212
+ python realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --auto_resume
213
+ ```
214
+
215
+ ### 使用已配对的数据
216
+
217
+ 你还可以用自己已经配对的数据微调 RealESRGAN。这个过程更类似于微调 ESRGAN。
218
+
219
+ **1. 准备数据集**
220
+
221
+ 假设你已经有两个文件夹(folder):
222
+
223
+ - **gt folder**(标准参考,高分辨率图像):*datasets/DF2K/DIV2K_train_HR_sub*
224
+ - **lq folder**(低质量,低分辨率图像):*datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub*
225
+
226
+ 然后,您可以使用脚本 [scripts/generate_meta_info_pairdata.py](scripts/generate_meta_info_pairdata.py) 生成元信息(meta_info)txt 文件。
227
+
228
+ ```bash
229
+ python scripts/generate_meta_info_pairdata.py --input datasets/DF2K/DIV2K_train_HR_sub datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub --meta_info datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt
230
+ ```
231
+
232
+ **2. 下载预训练模型**
233
+
234
+ 下载预先训练的模型到 `experiments/pretrained_models` 目录下。
235
+
236
+ - *RealESRGAN_x4plus.pth*:
237
+ ```bash
238
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models
239
+ ```
240
+
241
+ - *RealESRGAN_x4plus_netD.pth*:
242
+ ```bash
243
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models
244
+ ```
245
+
246
+ **3. 微调**
247
+
248
+ 修改选项文件 [options/finetune_realesrgan_x4plus_pairdata.yml](options/finetune_realesrgan_x4plus_pairdata.yml) ,特别是 `datasets` 部分:
249
+
250
+ ```yml
251
+ train:
252
+ name: DIV2K
253
+ type: RealESRGANPairedDataset
254
+ dataroot_gt: datasets/DF2K # 修改为你的 gt folder 文件夹根目录
255
+ dataroot_lq: datasets/DF2K # 修改为你的 lq folder 文件夹根目录
256
+ meta_info: datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt # 修改为你自己生成的元信息txt
257
+ io_backend:
258
+ type: disk
259
+ ```
260
+
261
+ 我们使用4个GPU进行训练。还可以使用参数 `--auto_resume` 在必要时自动恢复训练。
262
+
263
+ ```bash
264
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
265
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --launcher pytorch --auto_resume
266
+ ```
267
+
268
+ 用 **1个GPU** 训练:
269
+ ```bash
270
+ python realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --auto_resume
271
+ ```
docs/anime_comparisons.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Comparisons among different anime models
2
+
3
+ [English](anime_comparisons.md) **|** [简体中文](anime_comparisons_CN.md)
4
+
5
+ ## Update News
6
+
7
+ - 2022/04/24: Release **AnimeVideo-v3**. We have made the following improvements:
8
+ - **better naturalness**
9
+ - **Fewer artifacts**
10
+ - **more faithful to the original colors**
11
+ - **better texture restoration**
12
+ - **better background restoration**
13
+
14
+ ## Comparisons
15
+
16
+ We have compared our RealESRGAN-AnimeVideo-v3 with the following methods.
17
+ Our RealESRGAN-AnimeVideo-v3 can achieve better results with faster inference speed.
18
+
19
+ - [waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan) with the hyperparameters: `tile=0`, `noiselevel=2`
20
+ - [Real-CUGAN](https://github.com/bilibili/ailab/tree/main/Real-CUGAN): we use the [20220227](https://github.com/bilibili/ailab/releases/tag/Real-CUGAN-add-faster-low-memory-mode) version, the hyperparameters are: `cache_mode=0`, `tile=0`, `alpha=1`.
21
+ - our RealESRGAN-AnimeVideo-v3
22
+
23
+ ## Results
24
+
25
+ You may need to **zoom in** for comparing details, or **click the image** to see in the full size. Please note that the images
26
+ in the table below are the resized and cropped patches from the original images, you can download the original inputs and outputs from [Google Drive](https://drive.google.com/drive/folders/1bc_Hje1Nqop9NDkUvci2VACSjL7HZMRp?usp=sharing) .
27
+
28
+ **More natural results, better background restoration**
29
+ | Input | waifu2x | Real-CUGAN | RealESRGAN<br>AnimeVideo-v3 |
30
+ | :---: | :---: | :---: | :---: |
31
+ |![157083983-bec52c67-9a5e-4eed-afef-01fe6cd2af85_patch](https://user-images.githubusercontent.com/11482921/164452769-5d8cb4f8-1708-42d2-b941-f44a6f136feb.png) | ![](https://user-images.githubusercontent.com/11482921/164452767-c825cdec-f721-4ff1-aef1-fec41f146c4c.png) | ![](https://user-images.githubusercontent.com/11482921/164452755-3be50895-e3d4-432d-a7b9-9085c2a8e771.png) | ![](https://user-images.githubusercontent.com/11482921/164452771-be300656-379a-4323-a755-df8025a8c451.png) |
32
+ |![a0010_patch](https://user-images.githubusercontent.com/11482921/164454047-22eeb493-3fa9-4142-9fc2-6f2a1c074cd5.png) | ![](https://user-images.githubusercontent.com/11482921/164454046-d5e79f8f-00a0-4b55-bc39-295d0d69747a.png) | ![](https://user-images.githubusercontent.com/11482921/164454040-87886b11-9d08-48bd-862f-0d4aed72eb19.png) | ![](https://user-images.githubusercontent.com/11482921/164454055-73dc9f02-286e-4d5c-8f70-c13742e08f42.png) |
33
+ |![00000044_patch](https://user-images.githubusercontent.com/11482921/164451232-bacf64fc-e55a-44db-afbb-6b31ab0f8973.png) | ![](https://user-images.githubusercontent.com/11482921/164451318-f309b61a-75b8-4b74-b5f3-595725f1cf0b.png) | ![](https://user-images.githubusercontent.com/11482921/164451348-994f8a35-adbe-4a4b-9c61-feaa294af06a.png) | ![](https://user-images.githubusercontent.com/11482921/164451361-9b7d376e-6f75-4648-b752-542b44845d1c.png) |
34
+
35
+ **Fewer artifacts, better detailed textures**
36
+ | Input | waifu2x | Real-CUGAN | RealESRGAN<br>AnimeVideo-v3 |
37
+ | :---: | :---: | :---: | :---: |
38
+ |![00000053_patch](https://user-images.githubusercontent.com/11482921/164448411-148a7e5c-cfcd-4504-8bc7-e318eb883bb6.png) | ![](https://user-images.githubusercontent.com/11482921/164448633-dfc15224-b6d2-4403-a3c9-4bb819979364.png) | ![](https://user-images.githubusercontent.com/11482921/164448771-0d359509-5293-4d4c-8e3c-86a2a314ea88.png) | ![](https://user-images.githubusercontent.com/11482921/164448848-1a4ff99e-075b-4458-9db7-2c89e8160aa0.png) |
39
+ |![Disney_v4_22_018514_s2_patch](https://user-images.githubusercontent.com/11482921/164451898-83311cdf-bd3e-450f-b9f6-34d7fea3ab79.png) | ![](https://user-images.githubusercontent.com/11482921/164451894-6c56521c-6561-40d6-a3a5-8dde2c167b8a.png) | ![](https://user-images.githubusercontent.com/11482921/164451888-af9b47e3-39dc-4f3e-b0d7-d372d8191e2a.png) | ![](https://user-images.githubusercontent.com/11482921/164451901-31ca4dd4-9847-4baa-8cde-ad50f4053dcf.png) |
40
+ |![Japan_v2_0_007261_s2_patch](https://user-images.githubusercontent.com/11482921/164454578-73c77392-77de-49c5-b03c-c36631723192.png) | ![](https://user-images.githubusercontent.com/11482921/164454574-b1ede5f0-4520-4eaa-8f59-086751a34e62.png) | ![](https://user-images.githubusercontent.com/11482921/164454567-4cb3fdd8-6a2d-4016-85b2-a305a8ff80e4.png) | ![](https://user-images.githubusercontent.com/11482921/164454583-7f243f20-eca3-4500-ac43-eb058a4a101a.png) |
41
+ |![huluxiongdi_2_patch](https://user-images.githubusercontent.com/11482921/164453482-0726c842-337e-40ec-bf6c-f902ee956a8b.png) | ![](https://user-images.githubusercontent.com/11482921/164453480-71d5e091-5bfa-4c77-9c57-4e37f66ca0a3.png) | ![](https://user-images.githubusercontent.com/11482921/164453468-c295d3c9-3661-45f0-9ecd-406a1877f76e.png) | ![](https://user-images.githubusercontent.com/11482921/164453486-3091887c-587c-450e-b6fe-905cb518d57e.png) |
42
+
43
+ **Other better results**
44
+ | Input | waifu2x | Real-CUGAN | RealESRGAN<br>AnimeVideo-v3 |
45
+ | :---: | :---: | :---: | :---: |
46
+ |![Japan_v2_1_128525_s1_patch](https://user-images.githubusercontent.com/11482921/164454933-67697f7c-b6ef-47dc-bfca-822a78af8acf.png) | ![](https://user-images.githubusercontent.com/11482921/164454931-9450de7c-f0b3-4638-9c1e-0668e0c41ef0.png) | ![](https://user-images.githubusercontent.com/11482921/164454926-ed746976-786d-41c5-8a83-7693cd774c3a.png) | ![](https://user-images.githubusercontent.com/11482921/164454936-8abdf0f0-fb30-40eb-8281-3b46c0bcb9ae.png) |
47
+ |![tianshuqitan_2_patch](https://user-images.githubusercontent.com/11482921/164456948-807c1476-90b6-4507-81da-cb986d01600c.png) | ![](https://user-images.githubusercontent.com/11482921/164456943-25e89de9-d7e5-4f61-a2e1-96786af6ae9e.png) | ![](https://user-images.githubusercontent.com/11482921/164456954-b468c447-59f5-4594-9693-3683e44ba3e6.png) | ![](https://user-images.githubusercontent.com/11482921/164456957-640f910c-3b04-407c-ac20-044d72e19735.png) |
48
+ |![00000051_patch](https://user-images.githubusercontent.com/11482921/164456044-e9a6b3fa-b24e-4eb7-acf9-1f7746551b1e.png) ![00000051_patch](https://user-images.githubusercontent.com/11482921/164456421-b67245b0-767d-4250-9105-80bbe507ecfc.png) | ![](https://user-images.githubusercontent.com/11482921/164456040-85763cf2-cb28-4ba3-abb6-1dbb48c55713.png) ![](https://user-images.githubusercontent.com/11482921/164456419-59cf342e-bc1e-4044-868c-e1090abad313.png) | ![](https://user-images.githubusercontent.com/11482921/164456031-4244bb7b-8649-4e01-86f4-40c2099c5afd.png) ![](https://user-images.githubusercontent.com/11482921/164456411-b6afcbe9-c054-448d-a6df-96d3ba3047f8.png) | ![](https://user-images.githubusercontent.com/11482921/164456035-12e270be-fd52-46d4-b18a-3d3b680731fe.png) ![](https://user-images.githubusercontent.com/11482921/164456417-dcaa8b62-f497-427d-b2d2-f390f1200fb9.png) |
49
+ |![00000099_patch](https://user-images.githubusercontent.com/11482921/164455312-6411b6e1-5823-4131-a4b0-a6be8a9ae89f.png) | ![](https://user-images.githubusercontent.com/11482921/164455310-f2b99646-3a22-47a4-805b-dc451ac86ddb.png) | ![](https://user-images.githubusercontent.com/11482921/164455294-35471b42-2826-4451-b7ec-6de01344954c.png) | ![](https://user-images.githubusercontent.com/11482921/164455305-fa4c9758-564a-4081-8b4e-f11057a0404d.png) |
50
+ |![00000016_patch](https://user-images.githubusercontent.com/11482921/164455672-447353c9-2da2-4fcb-ba4a-7dd6b94c19c1.png) | ![](https://user-images.githubusercontent.com/11482921/164455669-df384631-baaa-42f8-9150-40f658471558.png) | ![](https://user-images.githubusercontent.com/11482921/164455657-68006bf0-138d-4981-aaca-8aa927d2f78a.png) | ![](https://user-images.githubusercontent.com/11482921/164455664-0342b93e-a62a-4b36-a90e-7118f3f1e45d.png) |
51
+
52
+ ## Inference Speed
53
+
54
+ ### PyTorch
55
+
56
+ Note that we only report the **model** time, and ignore the IO time.
57
+
58
+ | GPU | Input Resolution | waifu2x | Real-CUGAN | RealESRGAN-AnimeVideo-v3
59
+ | :---: | :---: | :---: | :---: | :---: |
60
+ | V100 | 1921 x 1080 | - | 3.4 fps | **10.0** fps |
61
+ | V100 | 1280 x 720 | - | 7.2 fps | **22.6** fps |
62
+ | V100 | 640 x 480 | - | 24.4 fps | **65.9** fps |
63
+
64
+ ### ncnn
65
+
66
+ - [ ] TODO
docs/anime_comparisons_CN.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 动漫视频模型比较
2
+
3
+ [English](anime_comparisons.md) **|** [简体中文](anime_comparisons_CN.md)
4
+
5
+ ## 更新
6
+
7
+ - 2022/04/24: 发布 **AnimeVideo-v3**. 主要做了以下更新:
8
+ - **更自然**
9
+ - **更少瑕疵**
10
+ - **颜色保持得更好**
11
+ - **更好的纹理恢复**
12
+ - **虚化背景处理**
13
+
14
+ ## 比较
15
+
16
+ 我们将 RealESRGAN-AnimeVideo-v3 与以下方法进行了比较。我们的 RealESRGAN-AnimeVideo-v3 可以以更快的推理速度获得更好的结果。
17
+
18
+ - [waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan). 超参数: `tile=0`, `noiselevel=2`
19
+ - [Real-CUGAN](https://github.com/bilibili/ailab/tree/main/Real-CUGAN): 我们使用了[20220227](https://github.com/bilibili/ailab/releases/tag/Real-CUGAN-add-faster-low-memory-mode)版本, 超参: `cache_mode=0`, `tile=0`, `alpha=1`.
20
+ - 我们的 RealESRGAN-AnimeVideo-v3
21
+
22
+ ## 结果
23
+
24
+ 您可能需要**放大**以比较详细信息, 或者**单击图像**以查看完整尺寸。 请注意下面表格的图片是从原图里裁剪patch并且resize后的结果,您可以从
25
+ [Google Drive](https://drive.google.com/drive/folders/1bc_Hje1Nqop9NDkUvci2VACSjL7HZMRp?usp=sharing) 里下载原始的输入和输出。
26
+
27
+ **更自然的结果,更好的虚化背景恢复**
28
+
29
+ | 输入 | waifu2x | Real-CUGAN | RealESRGAN<br>AnimeVideo-v3 |
30
+ | :---: | :---: | :---: | :---: |
31
+ |![157083983-bec52c67-9a5e-4eed-afef-01fe6cd2af85_patch](https://user-images.githubusercontent.com/11482921/164452769-5d8cb4f8-1708-42d2-b941-f44a6f136feb.png) | ![](https://user-images.githubusercontent.com/11482921/164452767-c825cdec-f721-4ff1-aef1-fec41f146c4c.png) | ![](https://user-images.githubusercontent.com/11482921/164452755-3be50895-e3d4-432d-a7b9-9085c2a8e771.png) | ![](https://user-images.githubusercontent.com/11482921/164452771-be300656-379a-4323-a755-df8025a8c451.png) |
32
+ |![a0010_patch](https://user-images.githubusercontent.com/11482921/164454047-22eeb493-3fa9-4142-9fc2-6f2a1c074cd5.png) | ![](https://user-images.githubusercontent.com/11482921/164454046-d5e79f8f-00a0-4b55-bc39-295d0d69747a.png) | ![](https://user-images.githubusercontent.com/11482921/164454040-87886b11-9d08-48bd-862f-0d4aed72eb19.png) | ![](https://user-images.githubusercontent.com/11482921/164454055-73dc9f02-286e-4d5c-8f70-c13742e08f42.png) |
33
+ |![00000044_patch](https://user-images.githubusercontent.com/11482921/164451232-bacf64fc-e55a-44db-afbb-6b31ab0f8973.png) | ![](https://user-images.githubusercontent.com/11482921/164451318-f309b61a-75b8-4b74-b5f3-595725f1cf0b.png) | ![](https://user-images.githubusercontent.com/11482921/164451348-994f8a35-adbe-4a4b-9c61-feaa294af06a.png) | ![](https://user-images.githubusercontent.com/11482921/164451361-9b7d376e-6f75-4648-b752-542b44845d1c.png) |
34
+
35
+ **更少瑕疵,更好的细节纹理**
36
+
37
+ | 输入 | waifu2x | Real-CUGAN | RealESRGAN<br>AnimeVideo-v3 |
38
+ | :---: | :---: | :---: | :---: |
39
+ |![00000053_patch](https://user-images.githubusercontent.com/11482921/164448411-148a7e5c-cfcd-4504-8bc7-e318eb883bb6.png) | ![](https://user-images.githubusercontent.com/11482921/164448633-dfc15224-b6d2-4403-a3c9-4bb819979364.png) | ![](https://user-images.githubusercontent.com/11482921/164448771-0d359509-5293-4d4c-8e3c-86a2a314ea88.png) | ![](https://user-images.githubusercontent.com/11482921/164448848-1a4ff99e-075b-4458-9db7-2c89e8160aa0.png) |
40
+ |![Disney_v4_22_018514_s2_patch](https://user-images.githubusercontent.com/11482921/164451898-83311cdf-bd3e-450f-b9f6-34d7fea3ab79.png) | ![](https://user-images.githubusercontent.com/11482921/164451894-6c56521c-6561-40d6-a3a5-8dde2c167b8a.png) | ![](https://user-images.githubusercontent.com/11482921/164451888-af9b47e3-39dc-4f3e-b0d7-d372d8191e2a.png) | ![](https://user-images.githubusercontent.com/11482921/164451901-31ca4dd4-9847-4baa-8cde-ad50f4053dcf.png) |
41
+ |![Japan_v2_0_007261_s2_patch](https://user-images.githubusercontent.com/11482921/164454578-73c77392-77de-49c5-b03c-c36631723192.png) | ![](https://user-images.githubusercontent.com/11482921/164454574-b1ede5f0-4520-4eaa-8f59-086751a34e62.png) | ![](https://user-images.githubusercontent.com/11482921/164454567-4cb3fdd8-6a2d-4016-85b2-a305a8ff80e4.png) | ![](https://user-images.githubusercontent.com/11482921/164454583-7f243f20-eca3-4500-ac43-eb058a4a101a.png) |
42
+ |![huluxiongdi_2_patch](https://user-images.githubusercontent.com/11482921/164453482-0726c842-337e-40ec-bf6c-f902ee956a8b.png) | ![](https://user-images.githubusercontent.com/11482921/164453480-71d5e091-5bfa-4c77-9c57-4e37f66ca0a3.png) | ![](https://user-images.githubusercontent.com/11482921/164453468-c295d3c9-3661-45f0-9ecd-406a1877f76e.png) | ![](https://user-images.githubusercontent.com/11482921/164453486-3091887c-587c-450e-b6fe-905cb518d57e.png) |
43
+
44
+ **其他更好的结果**
45
+
46
+ | 输入 | waifu2x | Real-CUGAN | RealESRGAN<br>AnimeVideo-v3 |
47
+ | :---: | :---: | :---: | :---: |
48
+ |![Japan_v2_1_128525_s1_patch](https://user-images.githubusercontent.com/11482921/164454933-67697f7c-b6ef-47dc-bfca-822a78af8acf.png) | ![](https://user-images.githubusercontent.com/11482921/164454931-9450de7c-f0b3-4638-9c1e-0668e0c41ef0.png) | ![](https://user-images.githubusercontent.com/11482921/164454926-ed746976-786d-41c5-8a83-7693cd774c3a.png) | ![](https://user-images.githubusercontent.com/11482921/164454936-8abdf0f0-fb30-40eb-8281-3b46c0bcb9ae.png) |
49
+ |![tianshuqitan_2_patch](https://user-images.githubusercontent.com/11482921/164456948-807c1476-90b6-4507-81da-cb986d01600c.png) | ![](https://user-images.githubusercontent.com/11482921/164456943-25e89de9-d7e5-4f61-a2e1-96786af6ae9e.png) | ![](https://user-images.githubusercontent.com/11482921/164456954-b468c447-59f5-4594-9693-3683e44ba3e6.png) | ![](https://user-images.githubusercontent.com/11482921/164456957-640f910c-3b04-407c-ac20-044d72e19735.png) |
50
+ |![00000051_patch](https://user-images.githubusercontent.com/11482921/164456044-e9a6b3fa-b24e-4eb7-acf9-1f7746551b1e.png) ![00000051_patch](https://user-images.githubusercontent.com/11482921/164456421-b67245b0-767d-4250-9105-80bbe507ecfc.png) | ![](https://user-images.githubusercontent.com/11482921/164456040-85763cf2-cb28-4ba3-abb6-1dbb48c55713.png) ![](https://user-images.githubusercontent.com/11482921/164456419-59cf342e-bc1e-4044-868c-e1090abad313.png) | ![](https://user-images.githubusercontent.com/11482921/164456031-4244bb7b-8649-4e01-86f4-40c2099c5afd.png) ![](https://user-images.githubusercontent.com/11482921/164456411-b6afcbe9-c054-448d-a6df-96d3ba3047f8.png) | ![](https://user-images.githubusercontent.com/11482921/164456035-12e270be-fd52-46d4-b18a-3d3b680731fe.png) ![](https://user-images.githubusercontent.com/11482921/164456417-dcaa8b62-f497-427d-b2d2-f390f1200fb9.png) |
51
+ |![00000099_patch](https://user-images.githubusercontent.com/11482921/164455312-6411b6e1-5823-4131-a4b0-a6be8a9ae89f.png) | ![](https://user-images.githubusercontent.com/11482921/164455310-f2b99646-3a22-47a4-805b-dc451ac86ddb.png) | ![](https://user-images.githubusercontent.com/11482921/164455294-35471b42-2826-4451-b7ec-6de01344954c.png) | ![](https://user-images.githubusercontent.com/11482921/164455305-fa4c9758-564a-4081-8b4e-f11057a0404d.png) |
52
+ |![00000016_patch](https://user-images.githubusercontent.com/11482921/164455672-447353c9-2da2-4fcb-ba4a-7dd6b94c19c1.png) | ![](https://user-images.githubusercontent.com/11482921/164455669-df384631-baaa-42f8-9150-40f658471558.png) | ![](https://user-images.githubusercontent.com/11482921/164455657-68006bf0-138d-4981-aaca-8aa927d2f78a.png) | ![](https://user-images.githubusercontent.com/11482921/164455664-0342b93e-a62a-4b36-a90e-7118f3f1e45d.png) |
53
+
54
+ ## 推理速度比较
55
+
56
+ ### PyTorch
57
+
58
+ 请注意,我们只报告了**模型推理**的时间, 而忽略了读写硬盘的时间.
59
+
60
+ | GPU | 输入尺寸 | waifu2x | Real-CUGAN | RealESRGAN-AnimeVideo-v3
61
+ | :---: | :---: | :---: | :---: | :---: |
62
+ | V100 | 1921 x 1080 | - | 3.4 fps | **10.0** fps |
63
+ | V100 | 1280 x 720 | - | 7.2 fps | **22.6** fps |
64
+ | V100 | 640 x 480 | - | 24.4 fps | **65.9** fps |
65
+
66
+ ### ncnn
67
+
68
+ - [ ] TODO
docs/anime_model.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Anime Model
2
+
3
+ :white_check_mark: We add [*RealESRGAN_x4plus_anime_6B.pth*](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth), which is optimized for **anime** images with much smaller model size.
4
+
5
+ - [How to Use](#how-to-use)
6
+ - [PyTorch Inference](#pytorch-inference)
7
+ - [ncnn Executable File](#ncnn-executable-file)
8
+ - [Comparisons with waifu2x](#comparisons-with-waifu2x)
9
+ - [Comparisons with Sliding Bars](#comparisons-with-sliding-bars)
10
+
11
+ <p align="center">
12
+ <img src="https://raw.githubusercontent.com/xinntao/public-figures/master/Real-ESRGAN/cmp_realesrgan_anime_1.png">
13
+ </p>
14
+
15
+ The following is a video comparison with sliding bar. You may need to use the full-screen mode for better visual quality, as the original image is large; otherwise, you may encounter aliasing issue.
16
+
17
+ <https://user-images.githubusercontent.com/17445847/131535127-613250d4-f754-4e20-9720-2f9608ad0675.mp4>
18
+
19
+ ## How to Use
20
+
21
+ ### PyTorch Inference
22
+
23
+ Pre-trained models: [RealESRGAN_x4plus_anime_6B](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth)
24
+
25
+ ```bash
26
+ # download model
27
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P weights
28
+ # inference
29
+ python inference_realesrgan.py -n RealESRGAN_x4plus_anime_6B -i inputs
30
+ ```
31
+
32
+ ### ncnn Executable File
33
+
34
+ Download the latest portable [Windows](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-windows.zip) / [Linux](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip) / [MacOS](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-macos.zip) **executable files for Intel/AMD/Nvidia GPU**.
35
+
36
+ Taking the Windows as example, run:
37
+
38
+ ```bash
39
+ ./realesrgan-ncnn-vulkan.exe -i input.jpg -o output.png -n realesrgan-x4plus-anime
40
+ ```
41
+
42
+ ## Comparisons with waifu2x
43
+
44
+ We compare Real-ESRGAN-anime with [waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan). We use the `-n 2 -s 4` for waifu2x.
45
+
46
+ <p align="center">
47
+ <img src="https://raw.githubusercontent.com/xinntao/public-figures/master/Real-ESRGAN/cmp_realesrgan_anime_1.png">
48
+ </p>
49
+ <p align="center">
50
+ <img src="https://raw.githubusercontent.com/xinntao/public-figures/master/Real-ESRGAN/cmp_realesrgan_anime_2.png">
51
+ </p>
52
+ <p align="center">
53
+ <img src="https://raw.githubusercontent.com/xinntao/public-figures/master/Real-ESRGAN/cmp_realesrgan_anime_3.png">
54
+ </p>
55
+ <p align="center">
56
+ <img src="https://raw.githubusercontent.com/xinntao/public-figures/master/Real-ESRGAN/cmp_realesrgan_anime_4.png">
57
+ </p>
58
+ <p align="center">
59
+ <img src="https://raw.githubusercontent.com/xinntao/public-figures/master/Real-ESRGAN/cmp_realesrgan_anime_5.png">
60
+ </p>
61
+
62
+ ## Comparisons with Sliding Bars
63
+
64
+ The following are video comparisons with sliding bar. You may need to use the full-screen mode for better visual quality, as the original image is large; otherwise, you may encounter aliasing issue.
65
+
66
+ <https://user-images.githubusercontent.com/17445847/131536647-a2fbf896-b495-4a9f-b1dd-ca7bbc90101a.mp4>
67
+
68
+ <https://user-images.githubusercontent.com/17445847/131536742-6d9d82b6-9765-4296-a15f-18f9aeaa5465.mp4>
docs/anime_video_model.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Anime Video Models
2
+
3
+ :white_check_mark: We add small models that are optimized for anime videos :-)<br>
4
+ More comparisons can be found in [anime_comparisons.md](anime_comparisons.md)
5
+
6
+ - [How to Use](#how-to-use)
7
+ - [PyTorch Inference](#pytorch-inference)
8
+ - [ncnn Executable File](#ncnn-executable-file)
9
+ - [Step 1: Use ffmpeg to extract frames from video](#step-1-use-ffmpeg-to-extract-frames-from-video)
10
+ - [Step 2: Inference with Real-ESRGAN executable file](#step-2-inference-with-real-esrgan-executable-file)
11
+ - [Step 3: Merge the enhanced frames back into a video](#step-3-merge-the-enhanced-frames-back-into-a-video)
12
+ - [More Demos](#more-demos)
13
+
14
+ | Models | Scale | Description |
15
+ | ---------------------------------------------------------------------------------------------------------------------------------- | :---- | :----------------------------- |
16
+ | [realesr-animevideov3](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth) | X4 <sup>1</sup> | Anime video model with XS size |
17
+
18
+ Note: <br>
19
+ <sup>1</sup> This model can also be used for X1, X2, X3.
20
+
21
+ ---
22
+
23
+ The following are some demos (best view in the full screen mode).
24
+
25
+ <https://user-images.githubusercontent.com/17445847/145706977-98bc64a4-af27-481c-8abe-c475e15db7ff.MP4>
26
+
27
+ <https://user-images.githubusercontent.com/17445847/145707055-6a4b79cb-3d9d-477f-8610-c6be43797133.MP4>
28
+
29
+ <https://user-images.githubusercontent.com/17445847/145783523-f4553729-9f03-44a8-a7cc-782aadf67b50.MP4>
30
+
31
+ ## How to Use
32
+
33
+ ### PyTorch Inference
34
+
35
+ ```bash
36
+ # download model
37
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P weights
38
+ # single gpu and single process inference
39
+ CUDA_VISIBLE_DEVICES=0 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2
40
+ # single gpu and multi process inference (you can use multi-processing to improve GPU utilization)
41
+ CUDA_VISIBLE_DEVICES=0 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 --num_process_per_gpu 2
42
+ # multi gpu and multi process inference
43
+ CUDA_VISIBLE_DEVICES=0,1,2,3 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 --num_process_per_gpu 2
44
+ ```
45
+
46
+ ```console
47
+ Usage:
48
+ --num_process_per_gpu The total number of process is num_gpu * num_process_per_gpu. The bottleneck of
49
+ the program lies on the IO, so the GPUs are usually not fully utilized. To alleviate
50
+ this issue, you can use multi-processing by setting this parameter. As long as it
51
+ does not exceed the CUDA memory
52
+ --extract_frame_first If you encounter ffmpeg error when using multi-processing, you can turn this option on.
53
+ ```
54
+
55
+ ### NCNN Executable File
56
+
57
+ #### Step 1: Use ffmpeg to extract frames from video
58
+
59
+ ```bash
60
+ ffmpeg -i onepiece_demo.mp4 -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 tmp_frames/frame%08d.png
61
+ ```
62
+
63
+ - Remember to create the folder `tmp_frames` ahead
64
+
65
+ #### Step 2: Inference with Real-ESRGAN executable file
66
+
67
+ 1. Download the latest portable [Windows](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-windows.zip) / [Linux](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip) / [MacOS](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-macos.zip) **executable files for Intel/AMD/Nvidia GPU**
68
+
69
+ 1. Taking the Windows as example, run:
70
+
71
+ ```bash
72
+ ./realesrgan-ncnn-vulkan.exe -i tmp_frames -o out_frames -n realesr-animevideov3 -s 2 -f jpg
73
+ ```
74
+
75
+ - Remember to create the folder `out_frames` ahead
76
+
77
+ #### Step 3: Merge the enhanced frames back into a video
78
+
79
+ 1. First obtain fps from input videos by
80
+
81
+ ```bash
82
+ ffmpeg -i onepiece_demo.mp4
83
+ ```
84
+
85
+ ```console
86
+ Usage:
87
+ -i input video path
88
+ ```
89
+
90
+ You will get the output similar to the following screenshot.
91
+
92
+ <p align="center">
93
+ <img src="https://user-images.githubusercontent.com/17445847/145710145-c4f3accf-b82f-4307-9f20-3803a2c73f57.png">
94
+ </p>
95
+
96
+ 2. Merge frames
97
+
98
+ ```bash
99
+ ffmpeg -r 23.98 -i out_frames/frame%08d.jpg -c:v libx264 -r 23.98 -pix_fmt yuv420p output.mp4
100
+ ```
101
+
102
+ ```console
103
+ Usage:
104
+ -i input video path
105
+ -c:v video encoder (usually we use libx264)
106
+ -r fps, remember to modify it to meet your needs
107
+ -pix_fmt pixel format in video
108
+ ```
109
+
110
+ If you also want to copy audio from the input videos, run:
111
+
112
+ ```bash
113
+ ffmpeg -r 23.98 -i out_frames/frame%08d.jpg -i onepiece_demo.mp4 -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r 23.98 -pix_fmt yuv420p output_w_audio.mp4
114
+ ```
115
+
116
+ ```console
117
+ Usage:
118
+ -i input video path, here we use two input streams
119
+ -c:v video encoder (usually we use libx264)
120
+ -r fps, remember to modify it to meet your needs
121
+ -pix_fmt pixel format in video
122
+ ```
123
+
124
+ ## More Demos
125
+
126
+ - Input video for One Piece:
127
+
128
+ <https://user-images.githubusercontent.com/17445847/145706822-0e83d9c4-78ef-40ee-b2a4-d8b8c3692d17.mp4>
129
+
130
+ - Out video for One Piece
131
+
132
+ <https://user-images.githubusercontent.com/17445847/164960481-759658cf-fcb8-480c-b888-cecb606e8744.mp4>
133
+
134
+ **More comparisons**
135
+
136
+ <https://user-images.githubusercontent.com/17445847/145707458-04a5e9b9-2edd-4d1f-b400-380a72e5f5e6.MP4>
docs/feedback.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Feedback 反馈
2
+
3
+ ## 动漫插画模型
4
+
5
+ 1. 视频处理不了: 目前的模型,不是针对视频的,所以视频效果很很不好。我们在探究针对视频的模型了
6
+ 1. 景深虚化有问题: 现在的模型把一些景深 和 特意的虚化 都复原了,感觉不好。这个后面我们会考虑把这个信息结合进入。一个简单的做法是识别景深和虚化,然后作为条件告诉神经网络,哪些地方复原强一些,哪些地方复原要弱一些
7
+ 1. 不可以调节: 像 Waifu2X 可以调节。可以根据自己的喜好,做调整,但是 Real-ESRGAN-anime 并不可以。导致有些恢复效果过了
8
+ 1. 把原来的风格改变了: 不同的动漫插画都有自己的风格,现在的 Real-ESRGAN-anime 倾向于恢复成一种风格(这是受到训练数据集影响的)。风格是动漫很重要的一个要素,所以要尽可能保持
9
+ 1. 模型太大: 目前的模型处理太慢,能够更快。这个我们有相关的工作在探究,希望能够尽快有结果,并应用到 Real-ESRGAN 这一系列的模型上
10
+
11
+ Thanks for the [detailed and valuable feedbacks/suggestions](https://github.com/xinntao/Real-ESRGAN/issues/131) by [2ji3150](https://github.com/2ji3150).
docs/model_zoo.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # :european_castle: Model Zoo
2
+
3
+ - [For General Images](#for-general-images)
4
+ - [For Anime Images](#for-anime-images)
5
+ - [For Anime Videos](#for-anime-videos)
6
+
7
+ ---
8
+
9
+ ## For General Images
10
+
11
+ | Models | Scale | Description |
12
+ | ------------------------------------------------------------------------------------------------------------------------------- | :---- | :------------------------------------------- |
13
+ | [RealESRGAN_x4plus](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth) | X4 | X4 model for general images |
14
+ | [RealESRGAN_x2plus](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth) | X2 | X2 model for general images |
15
+ | [RealESRNet_x4plus](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth) | X4 | X4 model with MSE loss (over-smooth effects) |
16
+ | [official ESRGAN_x4](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth) | X4 | official ESRGAN model |
17
+ | [realesr-general-x4v3](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth) | X4 (can also be used for X1, X2, X3) | A tiny small model (consume much fewer GPU memory and time); not too strong deblur and denoise capacity |
18
+
19
+ The following models are **discriminators**, which are usually used for fine-tuning.
20
+
21
+ | Models | Corresponding model |
22
+ | ---------------------------------------------------------------------------------------------------------------------- | :------------------ |
23
+ | [RealESRGAN_x4plus_netD](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth) | RealESRGAN_x4plus |
24
+ | [RealESRGAN_x2plus_netD](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x2plus_netD.pth) | RealESRGAN_x2plus |
25
+
26
+ ## For Anime Images / Illustrations
27
+
28
+ | Models | Scale | Description |
29
+ | ------------------------------------------------------------------------------------------------------------------------------ | :---- | :---------------------------------------------------------- |
30
+ | [RealESRGAN_x4plus_anime_6B](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth) | X4 | Optimized for anime images; 6 RRDB blocks (smaller network) |
31
+
32
+ The following models are **discriminators**, which are usually used for fine-tuning.
33
+
34
+ | Models | Corresponding model |
35
+ | ---------------------------------------------------------------------------------------------------------------------------------------- | :------------------------- |
36
+ | [RealESRGAN_x4plus_anime_6B_netD](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B_netD.pth) | RealESRGAN_x4plus_anime_6B |
37
+
38
+ ## For Animation Videos
39
+
40
+ | Models | Scale | Description |
41
+ | ---------------------------------------------------------------------------------------------------------------------------------- | :---- | :----------------------------- |
42
+ | [realesr-animevideov3](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth) | X4<sup>1</sup> | Anime video model with XS size |
43
+
44
+ Note: <br>
45
+ <sup>1</sup> This model can also be used for X1, X2, X3.
46
+
47
+ The following models are **discriminators**, which are usually used for fine-tuning.
48
+
49
+ TODO
docs/ncnn_conversion.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Instructions on converting to NCNN models
2
+
3
+ 1. Convert to onnx model with `scripts/pytorch2onnx.py`. Remember to modify codes accordingly
4
+ 1. Convert onnx model to ncnn model
5
+ 1. `cd ncnn-master\ncnn\build\tools\onnx`
6
+ 1. `onnx2ncnn.exe realesrgan-x4.onnx realesrgan-x4-raw.param realesrgan-x4-raw.bin`
7
+ 1. Optimize ncnn model
8
+ 1. fp16 mode
9
+ 1. `cd ncnn-master\ncnn\build\tools`
10
+ 1. `ncnnoptimize.exe realesrgan-x4-raw.param realesrgan-x4-raw.bin realesrgan-x4.param realesrgan-x4.bin 1`
11
+ 1. Modify the blob name in `realesrgan-x4.param`: `data` and `output`
gfpgan/weights/detection_Resnet50_Final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
3
+ size 109497761
gfpgan/weights/parsing_parsenet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2
3
+ size 85331193
inference_realesrgan copy.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import glob
4
+ import os
5
+ from basicsr.archs.rrdbnet_arch import RRDBNet
6
+ from basicsr.utils.download_util import load_file_from_url
7
+
8
+ from realesrgan import RealESRGANer
9
+ from realesrgan.archs.srvgg_arch import SRVGGNetCompact
10
+
11
+
12
+ def main():
13
+ """Inference demo for Real-ESRGAN.
14
+ """
15
+ parser = argparse.ArgumentParser()
16
+ parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
17
+ parser.add_argument(
18
+ '-n',
19
+ '--model_name',
20
+ type=str,
21
+ default='RealESRGAN_x4plus',
22
+ help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | '
23
+ 'realesr-animevideov3 | realesr-general-x4v3'))
24
+ parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
25
+ parser.add_argument(
26
+ '-dn',
27
+ '--denoise_strength',
28
+ type=float,
29
+ default=0.5,
30
+ help=('Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. '
31
+ 'Only used for the realesr-general-x4v3 model'))
32
+ parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
33
+ parser.add_argument(
34
+ '--model_path', type=str, default=None, help='[Option] Model path. Usually, you do not need to specify it')
35
+ parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
36
+ parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
37
+ parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
38
+ parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
39
+ parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
40
+ parser.add_argument(
41
+ '--fp32', action='store_true',default='--fp32', help='Use fp32 precision during inference. Default: fp16 (half precision).')
42
+ parser.add_argument(
43
+ '--alpha_upsampler',
44
+ type=str,
45
+ default='realesrgan',
46
+ help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
47
+ parser.add_argument(
48
+ '--ext',
49
+ type=str,
50
+ default='auto',
51
+ help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
52
+ parser.add_argument(
53
+ '-g', '--gpu-id', type=int, default=None, help='gpu device to use (default=None) can be 0,1,2 for multi-gpu')
54
+
55
+ args = parser.parse_args()
56
+
57
+ # determine models according to model names
58
+ args.model_name = args.model_name.split('.')[0]
59
+ if args.model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
60
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
61
+ netscale = 4
62
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
63
+ elif args.model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
64
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
65
+ netscale = 4
66
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
67
+ elif args.model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
68
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
69
+ netscale = 4
70
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
71
+ elif args.model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
72
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
73
+ netscale = 2
74
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
75
+ elif args.model_name == 'realesr-animevideov3': # x4 VGG-style model (XS size)
76
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
77
+ netscale = 4
78
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth']
79
+ elif args.model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
80
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
81
+ netscale = 4
82
+ file_url = [
83
+ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
84
+ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
85
+ ]
86
+
87
+ # determine model paths
88
+ if args.model_path is not None:
89
+ model_path = args.model_path
90
+ else:
91
+ model_path = os.path.join('weights', args.model_name + '.pth')
92
+ if not os.path.isfile(model_path):
93
+ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
94
+ for url in file_url:
95
+ # model_path will be updated
96
+ model_path = load_file_from_url(
97
+ url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
98
+
99
+ # use dni to control the denoise strength
100
+ dni_weight = None
101
+ if args.model_name == 'realesr-general-x4v3' and args.denoise_strength != 1:
102
+ wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
103
+ model_path = [model_path, wdn_model_path]
104
+ dni_weight = [args.denoise_strength, 1 - args.denoise_strength]
105
+
106
+ # restorer
107
+ upsampler = RealESRGANer(
108
+ scale=netscale,
109
+ model_path=model_path,
110
+ dni_weight=dni_weight,
111
+ model=model,
112
+ tile=args.tile,
113
+ tile_pad=args.tile_pad,
114
+ pre_pad=args.pre_pad,
115
+ half=not args.fp32,
116
+ gpu_id=args.gpu_id)
117
+
118
+ if args.face_enhance: # Use GFPGAN for face enhancement
119
+ from gfpgan import GFPGANer
120
+ face_enhancer = GFPGANer(
121
+ model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
122
+ upscale=args.outscale,
123
+ arch='clean',
124
+ channel_multiplier=2,
125
+ bg_upsampler=upsampler)
126
+ os.makedirs(args.output, exist_ok=True)
127
+
128
+ if os.path.isfile(args.input):
129
+ paths = [args.input]
130
+ else:
131
+ paths = sorted(glob.glob(os.path.join(args.input, '*')))
132
+
133
+ for idx, path in enumerate(paths):
134
+ imgname, extension = os.path.splitext(os.path.basename(path))
135
+ print('Testing', idx, imgname)
136
+
137
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
138
+ if len(img.shape) == 3 and img.shape[2] == 4:
139
+ img_mode = 'RGBA'
140
+ else:
141
+ img_mode = None
142
+
143
+ try:
144
+ if args.face_enhance:
145
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
146
+ else:
147
+ output, _ = upsampler.enhance(img, outscale=args.outscale)
148
+ except RuntimeError as error:
149
+ print('Error', error)
150
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
151
+ else:
152
+ if args.ext == 'auto':
153
+ extension = extension[1:]
154
+ else:
155
+ extension = args.ext
156
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
157
+ extension = 'png'
158
+ if args.suffix == '':
159
+ save_path = os.path.join(args.output, f'{imgname}.{extension}')
160
+ else:
161
+ save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
162
+ # cv2.imwrite(save_path, output)
163
+ return output
164
+
165
+ if __name__ == '__main__':
166
+ main()
inference_realesrgan.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import glob
4
+ import os
5
+ from basicsr.archs.rrdbnet_arch import RRDBNet
6
+ from basicsr.utils.download_util import load_file_from_url
7
+
8
+ from realesrgan import RealESRGANer
9
+ from realesrgan.archs.srvgg_arch import SRVGGNetCompact
10
+
11
+
12
+ def main(**args):
13
+ """Inference demo for Real-ESRGAN.
14
+ """
15
+ print(args)
16
+
17
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
18
+ netscale = 4
19
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
20
+
21
+
22
+ # determine model paths
23
+ model_path = os.path.join('weights', 'RealESRGAN_x4plus.pth')
24
+
25
+ # use dni to control the denoise strength
26
+ dni_weight = None
27
+
28
+ # restorer
29
+ upsampler = RealESRGANer(
30
+ scale=netscale,
31
+ model_path=model_path,
32
+ dni_weight=dni_weight,
33
+ model=model,
34
+ tile=0,
35
+ tile_pad=10,
36
+ pre_pad=0,
37
+ half=not args['fp32'],
38
+ gpu_id=None)
39
+
40
+ if args['face_enhance'] == 'True': # Use GFPGAN for face enhancement
41
+ from gfpgan import GFPGANer
42
+ face_enhancer = GFPGANer(
43
+ model_path=os.path.join('weights', 'GFPGANv1.3.pth'),
44
+ upscale=args['outscale'],
45
+ arch='clean',
46
+ channel_multiplier=2,
47
+ bg_upsampler=upsampler)
48
+
49
+ # os.makedirs(args.output, exist_ok=True)
50
+
51
+ path = args['input']
52
+
53
+ # for idx, path in enumerate(paths):
54
+ imgname, extension = os.path.splitext(os.path.basename(path))
55
+ # print('Testing', idx, imgname)
56
+
57
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
58
+ if len(img.shape) == 3 and img.shape[2] == 4:
59
+ img_mode = 'RGBA'
60
+ else:
61
+ img_mode = None
62
+
63
+ try:
64
+ if args['face_enhance']:
65
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
66
+ else:
67
+ output, _ = upsampler.enhance(img, outscale=args['outscale'])
68
+ except RuntimeError as error:
69
+ print('Error', error)
70
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
71
+ else:
72
+ if args['ext'] == 'auto':
73
+ extension = extension[1:]
74
+ else:
75
+ extension = args['ext']
76
+
77
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
78
+ extension = 'png'
79
+ # if args.suffix == '':
80
+ save_path = os.path.join(args['output'], f'{imgname}.{extension}')
81
+ # else:
82
+ # save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
83
+ cv2.imwrite(save_path, output)
84
+ return save_path
85
+ # return output
86
+
87
+ # if __name__ == '__main__':
88
+ # main()
inference_realesrgan_video.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import glob
4
+ import mimetypes
5
+ import numpy as np
6
+ import os
7
+ import shutil
8
+ import subprocess
9
+ import torch
10
+ from basicsr.archs.rrdbnet_arch import RRDBNet
11
+ from basicsr.utils.download_util import load_file_from_url
12
+ from os import path as osp
13
+ from tqdm import tqdm
14
+
15
+ from realesrgan import RealESRGANer
16
+ from realesrgan.archs.srvgg_arch import SRVGGNetCompact
17
+
18
+ try:
19
+ import ffmpeg
20
+ except ImportError:
21
+ import pip
22
+ pip.main(['install', '--user', 'ffmpeg-python'])
23
+ import ffmpeg
24
+
25
+
26
+ def get_video_meta_info(video_path):
27
+ ret = {}
28
+ probe = ffmpeg.probe(video_path)
29
+ video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
30
+ has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams'])
31
+ ret['width'] = video_streams[0]['width']
32
+ ret['height'] = video_streams[0]['height']
33
+ ret['fps'] = eval(video_streams[0]['avg_frame_rate'])
34
+ ret['audio'] = ffmpeg.input(video_path).audio if has_audio else None
35
+ ret['nb_frames'] = int(video_streams[0]['nb_frames'])
36
+ return ret
37
+
38
+
39
+ def get_sub_video(args, num_process, process_idx):
40
+ if num_process == 1:
41
+ return args.input
42
+ meta = get_video_meta_info(args.input)
43
+ duration = int(meta['nb_frames'] / meta['fps'])
44
+ part_time = duration // num_process
45
+ print(f'duration: {duration}, part_time: {part_time}')
46
+ os.makedirs(osp.join(args.output, f'{args.video_name}_inp_tmp_videos'), exist_ok=True)
47
+ out_path = osp.join(args.output, f'{args.video_name}_inp_tmp_videos', f'{process_idx:03d}.mp4')
48
+ cmd = [
49
+ args.ffmpeg_bin, f'-i {args.input}', '-ss', f'{part_time * process_idx}',
50
+ f'-to {part_time * (process_idx + 1)}' if process_idx != num_process - 1 else '', '-async 1', out_path, '-y'
51
+ ]
52
+ print(' '.join(cmd))
53
+ subprocess.call(' '.join(cmd), shell=True)
54
+ return out_path
55
+
56
+
57
+ class Reader:
58
+
59
+ def __init__(self, args, total_workers=1, worker_idx=0):
60
+ self.args = args
61
+ input_type = mimetypes.guess_type(args.input)[0]
62
+ self.input_type = 'folder' if input_type is None else input_type
63
+ self.paths = [] # for image&folder type
64
+ self.audio = None
65
+ self.input_fps = None
66
+ if self.input_type.startswith('video'):
67
+ video_path = get_sub_video(args, total_workers, worker_idx)
68
+ self.stream_reader = (
69
+ ffmpeg.input(video_path).output('pipe:', format='rawvideo', pix_fmt='bgr24',
70
+ loglevel='error').run_async(
71
+ pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
72
+ meta = get_video_meta_info(video_path)
73
+ self.width = meta['width']
74
+ self.height = meta['height']
75
+ self.input_fps = meta['fps']
76
+ self.audio = meta['audio']
77
+ self.nb_frames = meta['nb_frames']
78
+
79
+ else:
80
+ if self.input_type.startswith('image'):
81
+ self.paths = [args.input]
82
+ else:
83
+ paths = sorted(glob.glob(os.path.join(args.input, '*')))
84
+ tot_frames = len(paths)
85
+ num_frame_per_worker = tot_frames // total_workers + (1 if tot_frames % total_workers else 0)
86
+ self.paths = paths[num_frame_per_worker * worker_idx:num_frame_per_worker * (worker_idx + 1)]
87
+
88
+ self.nb_frames = len(self.paths)
89
+ assert self.nb_frames > 0, 'empty folder'
90
+ from PIL import Image
91
+ tmp_img = Image.open(self.paths[0])
92
+ self.width, self.height = tmp_img.size
93
+ self.idx = 0
94
+
95
+ def get_resolution(self):
96
+ return self.height, self.width
97
+
98
+ def get_fps(self):
99
+ if self.args.fps is not None:
100
+ return self.args.fps
101
+ elif self.input_fps is not None:
102
+ return self.input_fps
103
+ return 24
104
+
105
+ def get_audio(self):
106
+ return self.audio
107
+
108
+ def __len__(self):
109
+ return self.nb_frames
110
+
111
+ def get_frame_from_stream(self):
112
+ img_bytes = self.stream_reader.stdout.read(self.width * self.height * 3) # 3 bytes for one pixel
113
+ if not img_bytes:
114
+ return None
115
+ img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3])
116
+ return img
117
+
118
+ def get_frame_from_list(self):
119
+ if self.idx >= self.nb_frames:
120
+ return None
121
+ img = cv2.imread(self.paths[self.idx])
122
+ self.idx += 1
123
+ return img
124
+
125
+ def get_frame(self):
126
+ if self.input_type.startswith('video'):
127
+ return self.get_frame_from_stream()
128
+ else:
129
+ return self.get_frame_from_list()
130
+
131
+ def close(self):
132
+ if self.input_type.startswith('video'):
133
+ self.stream_reader.stdin.close()
134
+ self.stream_reader.wait()
135
+
136
+
137
+ class Writer:
138
+
139
+ def __init__(self, args, audio, height, width, video_save_path, fps):
140
+ out_width, out_height = int(width * args.outscale), int(height * args.outscale)
141
+ if out_height > 2160:
142
+ print('You are generating video that is larger than 4K, which will be very slow due to IO speed.',
143
+ 'We highly recommend to decrease the outscale(aka, -s).')
144
+
145
+ if audio is not None:
146
+ self.stream_writer = (
147
+ ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{out_width}x{out_height}',
148
+ framerate=fps).output(
149
+ audio,
150
+ video_save_path,
151
+ pix_fmt='yuv420p',
152
+ vcodec='libx264',
153
+ loglevel='error',
154
+ acodec='copy').overwrite_output().run_async(
155
+ pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
156
+ else:
157
+ self.stream_writer = (
158
+ ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{out_width}x{out_height}',
159
+ framerate=fps).output(
160
+ video_save_path, pix_fmt='yuv420p', vcodec='libx264',
161
+ loglevel='error').overwrite_output().run_async(
162
+ pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
163
+
164
+ def write_frame(self, frame):
165
+ frame = frame.astype(np.uint8).tobytes()
166
+ self.stream_writer.stdin.write(frame)
167
+
168
+ def close(self):
169
+ self.stream_writer.stdin.close()
170
+ self.stream_writer.wait()
171
+
172
+
173
+ def inference_video(args, video_save_path, device=None, total_workers=1, worker_idx=0):
174
+ # ---------------------- determine models according to model names ---------------------- #
175
+ args.model_name = args.model_name.split('.pth')[0]
176
+ if args.model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
177
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
178
+ netscale = 4
179
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
180
+ elif args.model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
181
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
182
+ netscale = 4
183
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
184
+ elif args.model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
185
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
186
+ netscale = 4
187
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
188
+ elif args.model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
189
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
190
+ netscale = 2
191
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
192
+ elif args.model_name == 'realesr-animevideov3': # x4 VGG-style model (XS size)
193
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
194
+ netscale = 4
195
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth']
196
+ elif args.model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
197
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
198
+ netscale = 4
199
+ file_url = [
200
+ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
201
+ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
202
+ ]
203
+
204
+ # ---------------------- determine model paths ---------------------- #
205
+ model_path = os.path.join('weights', args.model_name + '.pth')
206
+ if not os.path.isfile(model_path):
207
+ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
208
+ for url in file_url:
209
+ # model_path will be updated
210
+ model_path = load_file_from_url(
211
+ url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
212
+
213
+ # use dni to control the denoise strength
214
+ dni_weight = None
215
+ if args.model_name == 'realesr-general-x4v3' and args.denoise_strength != 1:
216
+ wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
217
+ model_path = [model_path, wdn_model_path]
218
+ dni_weight = [args.denoise_strength, 1 - args.denoise_strength]
219
+
220
+ # restorer
221
+ upsampler = RealESRGANer(
222
+ scale=netscale,
223
+ model_path=model_path,
224
+ dni_weight=dni_weight,
225
+ model=model,
226
+ tile=args.tile,
227
+ tile_pad=args.tile_pad,
228
+ pre_pad=args.pre_pad,
229
+ half=not args.fp32,
230
+ device=device,
231
+ )
232
+
233
+ if 'anime' in args.model_name and args.face_enhance:
234
+ print('face_enhance is not supported in anime models, we turned this option off for you. '
235
+ 'if you insist on turning it on, please manually comment the relevant lines of code.')
236
+ args.face_enhance = False
237
+
238
+ if args.face_enhance: # Use GFPGAN for face enhancement
239
+ from gfpgan import GFPGANer
240
+ face_enhancer = GFPGANer(
241
+ model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
242
+ upscale=args.outscale,
243
+ arch='clean',
244
+ channel_multiplier=2,
245
+ bg_upsampler=upsampler) # TODO support custom device
246
+ else:
247
+ face_enhancer = None
248
+
249
+ reader = Reader(args, total_workers, worker_idx)
250
+ audio = reader.get_audio()
251
+ height, width = reader.get_resolution()
252
+ fps = reader.get_fps()
253
+ writer = Writer(args, audio, height, width, video_save_path, fps)
254
+
255
+ pbar = tqdm(total=len(reader), unit='frame', desc='inference')
256
+ while True:
257
+ img = reader.get_frame()
258
+ if img is None:
259
+ break
260
+
261
+ try:
262
+ if args.face_enhance:
263
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
264
+ else:
265
+ output, _ = upsampler.enhance(img, outscale=args.outscale)
266
+ except RuntimeError as error:
267
+ print('Error', error)
268
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
269
+ else:
270
+ writer.write_frame(output)
271
+
272
+ torch.cuda.synchronize(device)
273
+ pbar.update(1)
274
+
275
+ reader.close()
276
+ writer.close()
277
+
278
+
279
+ def run(args):
280
+ args.video_name = osp.splitext(os.path.basename(args.input))[0]
281
+ video_save_path = osp.join(args.output, f'{args.video_name}_{args.suffix}.mp4')
282
+
283
+ if args.extract_frame_first:
284
+ tmp_frames_folder = osp.join(args.output, f'{args.video_name}_inp_tmp_frames')
285
+ os.makedirs(tmp_frames_folder, exist_ok=True)
286
+ os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {tmp_frames_folder}/frame%08d.png')
287
+ args.input = tmp_frames_folder
288
+
289
+ num_gpus = torch.cuda.device_count()
290
+ num_process = num_gpus * args.num_process_per_gpu
291
+ if num_process == 1:
292
+ inference_video(args, video_save_path)
293
+ return
294
+
295
+ ctx = torch.multiprocessing.get_context('spawn')
296
+ pool = ctx.Pool(num_process)
297
+ os.makedirs(osp.join(args.output, f'{args.video_name}_out_tmp_videos'), exist_ok=True)
298
+ pbar = tqdm(total=num_process, unit='sub_video', desc='inference')
299
+ for i in range(num_process):
300
+ sub_video_save_path = osp.join(args.output, f'{args.video_name}_out_tmp_videos', f'{i:03d}.mp4')
301
+ pool.apply_async(
302
+ inference_video,
303
+ args=(args, sub_video_save_path, torch.device(i % num_gpus), num_process, i),
304
+ callback=lambda arg: pbar.update(1))
305
+ pool.close()
306
+ pool.join()
307
+
308
+ # combine sub videos
309
+ # prepare vidlist.txt
310
+ with open(f'{args.output}/{args.video_name}_vidlist.txt', 'w') as f:
311
+ for i in range(num_process):
312
+ f.write(f'file \'{args.video_name}_out_tmp_videos/{i:03d}.mp4\'\n')
313
+
314
+ cmd = [
315
+ args.ffmpeg_bin, '-f', 'concat', '-safe', '0', '-i', f'{args.output}/{args.video_name}_vidlist.txt', '-c',
316
+ 'copy', f'{video_save_path}'
317
+ ]
318
+ print(' '.join(cmd))
319
+ subprocess.call(cmd)
320
+ shutil.rmtree(osp.join(args.output, f'{args.video_name}_out_tmp_videos'))
321
+ if osp.exists(osp.join(args.output, f'{args.video_name}_inp_tmp_videos')):
322
+ shutil.rmtree(osp.join(args.output, f'{args.video_name}_inp_tmp_videos'))
323
+ os.remove(f'{args.output}/{args.video_name}_vidlist.txt')
324
+
325
+
326
+ def main():
327
+ """Inference demo for Real-ESRGAN.
328
+ It mainly for restoring anime videos.
329
+
330
+ """
331
+ parser = argparse.ArgumentParser()
332
+ parser.add_argument('-i', '--input', type=str, default='inputs', help='Input video, image or folder')
333
+ parser.add_argument(
334
+ '-n',
335
+ '--model_name',
336
+ type=str,
337
+ default='realesr-animevideov3',
338
+ help=('Model names: realesr-animevideov3 | RealESRGAN_x4plus_anime_6B | RealESRGAN_x4plus | RealESRNet_x4plus |'
339
+ ' RealESRGAN_x2plus | realesr-general-x4v3'
340
+ 'Default:realesr-animevideov3'))
341
+ parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
342
+ parser.add_argument(
343
+ '-dn',
344
+ '--denoise_strength',
345
+ type=float,
346
+ default=0.5,
347
+ help=('Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. '
348
+ 'Only used for the realesr-general-x4v3 model'))
349
+ parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
350
+ parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored video')
351
+ parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
352
+ parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
353
+ parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
354
+ parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
355
+ parser.add_argument(
356
+ '--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
357
+ parser.add_argument('--fps', type=float, default=None, help='FPS of the output video')
358
+ parser.add_argument('--ffmpeg_bin', type=str, default='ffmpeg', help='The path to ffmpeg')
359
+ parser.add_argument('--extract_frame_first', action='store_true')
360
+ parser.add_argument('--num_process_per_gpu', type=int, default=1)
361
+
362
+ parser.add_argument(
363
+ '--alpha_upsampler',
364
+ type=str,
365
+ default='realesrgan',
366
+ help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
367
+ parser.add_argument(
368
+ '--ext',
369
+ type=str,
370
+ default='auto',
371
+ help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
372
+ args = parser.parse_args()
373
+
374
+ args.input = args.input.rstrip('/').rstrip('\\')
375
+ os.makedirs(args.output, exist_ok=True)
376
+
377
+ if mimetypes.guess_type(args.input)[0] is not None and mimetypes.guess_type(args.input)[0].startswith('video'):
378
+ is_video = True
379
+ else:
380
+ is_video = False
381
+
382
+ if is_video and args.input.endswith('.flv'):
383
+ mp4_path = args.input.replace('.flv', '.mp4')
384
+ os.system(f'ffmpeg -i {args.input} -codec copy {mp4_path}')
385
+ args.input = mp4_path
386
+
387
+ if args.extract_frame_first and not is_video:
388
+ args.extract_frame_first = False
389
+
390
+ run(args)
391
+
392
+ if args.extract_frame_first:
393
+ tmp_frames_folder = osp.join(args.output, f'{args.video_name}_inp_tmp_frames')
394
+ shutil.rmtree(tmp_frames_folder)
395
+
396
+
397
+ if __name__ == '__main__':
398
+ main()
inputs/image-31.png ADDED
options/finetune_realesrgan_x4plus.yml ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: finetune_RealESRGANx4plus_400k
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+
93
+ network_d:
94
+ type: UNetDiscriminatorSN
95
+ num_in_ch: 3
96
+ num_feat: 64
97
+ skip_connection: True
98
+
99
+ # path
100
+ path:
101
+ # use the pre-trained Real-ESRNet model
102
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
103
+ param_key_g: params_ema
104
+ strict_load_g: true
105
+ pretrain_network_d: experiments/pretrained_models/RealESRGAN_x4plus_netD.pth
106
+ param_key_d: params
107
+ strict_load_d: true
108
+ resume_state: ~
109
+
110
+ # training settings
111
+ train:
112
+ ema_decay: 0.999
113
+ optim_g:
114
+ type: Adam
115
+ lr: !!float 1e-4
116
+ weight_decay: 0
117
+ betas: [0.9, 0.99]
118
+ optim_d:
119
+ type: Adam
120
+ lr: !!float 1e-4
121
+ weight_decay: 0
122
+ betas: [0.9, 0.99]
123
+
124
+ scheduler:
125
+ type: MultiStepLR
126
+ milestones: [400000]
127
+ gamma: 0.5
128
+
129
+ total_iter: 400000
130
+ warmup_iter: -1 # no warm up
131
+
132
+ # losses
133
+ pixel_opt:
134
+ type: L1Loss
135
+ loss_weight: 1.0
136
+ reduction: mean
137
+ # perceptual loss (content and style losses)
138
+ perceptual_opt:
139
+ type: PerceptualLoss
140
+ layer_weights:
141
+ # before relu
142
+ 'conv1_2': 0.1
143
+ 'conv2_2': 0.1
144
+ 'conv3_4': 1
145
+ 'conv4_4': 1
146
+ 'conv5_4': 1
147
+ vgg_type: vgg19
148
+ use_input_norm: true
149
+ perceptual_weight: !!float 1.0
150
+ style_weight: 0
151
+ range_norm: false
152
+ criterion: l1
153
+ # gan loss
154
+ gan_opt:
155
+ type: GANLoss
156
+ gan_type: vanilla
157
+ real_label_val: 1.0
158
+ fake_label_val: 0.0
159
+ loss_weight: !!float 1e-1
160
+
161
+ net_d_iters: 1
162
+ net_d_init_iters: 0
163
+
164
+ # Uncomment these for validation
165
+ # validation settings
166
+ # val:
167
+ # val_freq: !!float 5e3
168
+ # save_img: True
169
+
170
+ # metrics:
171
+ # psnr: # metric name
172
+ # type: calculate_psnr
173
+ # crop_border: 4
174
+ # test_y_channel: false
175
+
176
+ # logging settings
177
+ logger:
178
+ print_freq: 100
179
+ save_checkpoint_freq: !!float 5e3
180
+ use_tb_logger: true
181
+ wandb:
182
+ project: ~
183
+ resume_id: ~
184
+
185
+ # dist training settings
186
+ dist_params:
187
+ backend: nccl
188
+ port: 29500
options/finetune_realesrgan_x4plus_pairdata.yml ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: finetune_RealESRGANx4plus_400k_pairdata
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto
6
+ manual_seed: 0
7
+
8
+ # USM the ground-truth
9
+ l1_gt_usm: True
10
+ percep_gt_usm: True
11
+ gan_gt_usm: False
12
+
13
+ high_order_degradation: False # do not use the high-order degradation generation process
14
+
15
+ # dataset and data loader settings
16
+ datasets:
17
+ train:
18
+ name: DIV2K
19
+ type: RealESRGANPairedDataset
20
+ dataroot_gt: datasets/DF2K
21
+ dataroot_lq: datasets/DF2K
22
+ meta_info: datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt
23
+ io_backend:
24
+ type: disk
25
+
26
+ gt_size: 256
27
+ use_hflip: True
28
+ use_rot: False
29
+
30
+ # data loader
31
+ use_shuffle: true
32
+ num_worker_per_gpu: 5
33
+ batch_size_per_gpu: 12
34
+ dataset_enlarge_ratio: 1
35
+ prefetch_mode: ~
36
+
37
+ # Uncomment these for validation
38
+ # val:
39
+ # name: validation
40
+ # type: PairedImageDataset
41
+ # dataroot_gt: path_to_gt
42
+ # dataroot_lq: path_to_lq
43
+ # io_backend:
44
+ # type: disk
45
+
46
+ # network structures
47
+ network_g:
48
+ type: RRDBNet
49
+ num_in_ch: 3
50
+ num_out_ch: 3
51
+ num_feat: 64
52
+ num_block: 23
53
+ num_grow_ch: 32
54
+
55
+ network_d:
56
+ type: UNetDiscriminatorSN
57
+ num_in_ch: 3
58
+ num_feat: 64
59
+ skip_connection: True
60
+
61
+ # path
62
+ path:
63
+ # use the pre-trained Real-ESRNet model
64
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
65
+ param_key_g: params_ema
66
+ strict_load_g: true
67
+ pretrain_network_d: experiments/pretrained_models/RealESRGAN_x4plus_netD.pth
68
+ param_key_d: params
69
+ strict_load_d: true
70
+ resume_state: ~
71
+
72
+ # training settings
73
+ train:
74
+ ema_decay: 0.999
75
+ optim_g:
76
+ type: Adam
77
+ lr: !!float 1e-4
78
+ weight_decay: 0
79
+ betas: [0.9, 0.99]
80
+ optim_d:
81
+ type: Adam
82
+ lr: !!float 1e-4
83
+ weight_decay: 0
84
+ betas: [0.9, 0.99]
85
+
86
+ scheduler:
87
+ type: MultiStepLR
88
+ milestones: [400000]
89
+ gamma: 0.5
90
+
91
+ total_iter: 400000
92
+ warmup_iter: -1 # no warm up
93
+
94
+ # losses
95
+ pixel_opt:
96
+ type: L1Loss
97
+ loss_weight: 1.0
98
+ reduction: mean
99
+ # perceptual loss (content and style losses)
100
+ perceptual_opt:
101
+ type: PerceptualLoss
102
+ layer_weights:
103
+ # before relu
104
+ 'conv1_2': 0.1
105
+ 'conv2_2': 0.1
106
+ 'conv3_4': 1
107
+ 'conv4_4': 1
108
+ 'conv5_4': 1
109
+ vgg_type: vgg19
110
+ use_input_norm: true
111
+ perceptual_weight: !!float 1.0
112
+ style_weight: 0
113
+ range_norm: false
114
+ criterion: l1
115
+ # gan loss
116
+ gan_opt:
117
+ type: GANLoss
118
+ gan_type: vanilla
119
+ real_label_val: 1.0
120
+ fake_label_val: 0.0
121
+ loss_weight: !!float 1e-1
122
+
123
+ net_d_iters: 1
124
+ net_d_init_iters: 0
125
+
126
+ # Uncomment these for validation
127
+ # validation settings
128
+ # val:
129
+ # val_freq: !!float 5e3
130
+ # save_img: True
131
+
132
+ # metrics:
133
+ # psnr: # metric name
134
+ # type: calculate_psnr
135
+ # crop_border: 4
136
+ # test_y_channel: false
137
+
138
+ # logging settings
139
+ logger:
140
+ print_freq: 100
141
+ save_checkpoint_freq: !!float 5e3
142
+ use_tb_logger: true
143
+ wandb:
144
+ project: ~
145
+ resume_id: ~
146
+
147
+ # dist training settings
148
+ dist_params:
149
+ backend: nccl
150
+ port: 29500
options/train_realesrgan_x2plus.yml ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRGANx2plus_400k_B12G4
3
+ model_type: RealESRGANModel
4
+ scale: 2
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+ scale: 2
93
+
94
+ network_d:
95
+ type: UNetDiscriminatorSN
96
+ num_in_ch: 3
97
+ num_feat: 64
98
+ skip_connection: True
99
+
100
+ # path
101
+ path:
102
+ # use the pre-trained Real-ESRNet model
103
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x2plus.pth
104
+ param_key_g: params_ema
105
+ strict_load_g: true
106
+ resume_state: ~
107
+
108
+ # training settings
109
+ train:
110
+ ema_decay: 0.999
111
+ optim_g:
112
+ type: Adam
113
+ lr: !!float 1e-4
114
+ weight_decay: 0
115
+ betas: [0.9, 0.99]
116
+ optim_d:
117
+ type: Adam
118
+ lr: !!float 1e-4
119
+ weight_decay: 0
120
+ betas: [0.9, 0.99]
121
+
122
+ scheduler:
123
+ type: MultiStepLR
124
+ milestones: [400000]
125
+ gamma: 0.5
126
+
127
+ total_iter: 400000
128
+ warmup_iter: -1 # no warm up
129
+
130
+ # losses
131
+ pixel_opt:
132
+ type: L1Loss
133
+ loss_weight: 1.0
134
+ reduction: mean
135
+ # perceptual loss (content and style losses)
136
+ perceptual_opt:
137
+ type: PerceptualLoss
138
+ layer_weights:
139
+ # before relu
140
+ 'conv1_2': 0.1
141
+ 'conv2_2': 0.1
142
+ 'conv3_4': 1
143
+ 'conv4_4': 1
144
+ 'conv5_4': 1
145
+ vgg_type: vgg19
146
+ use_input_norm: true
147
+ perceptual_weight: !!float 1.0
148
+ style_weight: 0
149
+ range_norm: false
150
+ criterion: l1
151
+ # gan loss
152
+ gan_opt:
153
+ type: GANLoss
154
+ gan_type: vanilla
155
+ real_label_val: 1.0
156
+ fake_label_val: 0.0
157
+ loss_weight: !!float 1e-1
158
+
159
+ net_d_iters: 1
160
+ net_d_init_iters: 0
161
+
162
+ # Uncomment these for validation
163
+ # validation settings
164
+ # val:
165
+ # val_freq: !!float 5e3
166
+ # save_img: True
167
+
168
+ # metrics:
169
+ # psnr: # metric name
170
+ # type: calculate_psnr
171
+ # crop_border: 4
172
+ # test_y_channel: false
173
+
174
+ # logging settings
175
+ logger:
176
+ print_freq: 100
177
+ save_checkpoint_freq: !!float 5e3
178
+ use_tb_logger: true
179
+ wandb:
180
+ project: ~
181
+ resume_id: ~
182
+
183
+ # dist training settings
184
+ dist_params:
185
+ backend: nccl
186
+ port: 29500
options/train_realesrgan_x4plus.yml ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRGANx4plus_400k_B12G4
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+
93
+ network_d:
94
+ type: UNetDiscriminatorSN
95
+ num_in_ch: 3
96
+ num_feat: 64
97
+ skip_connection: True
98
+
99
+ # path
100
+ path:
101
+ # use the pre-trained Real-ESRNet model
102
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
103
+ param_key_g: params_ema
104
+ strict_load_g: true
105
+ resume_state: ~
106
+
107
+ # training settings
108
+ train:
109
+ ema_decay: 0.999
110
+ optim_g:
111
+ type: Adam
112
+ lr: !!float 1e-4
113
+ weight_decay: 0
114
+ betas: [0.9, 0.99]
115
+ optim_d:
116
+ type: Adam
117
+ lr: !!float 1e-4
118
+ weight_decay: 0
119
+ betas: [0.9, 0.99]
120
+
121
+ scheduler:
122
+ type: MultiStepLR
123
+ milestones: [400000]
124
+ gamma: 0.5
125
+
126
+ total_iter: 400000
127
+ warmup_iter: -1 # no warm up
128
+
129
+ # losses
130
+ pixel_opt:
131
+ type: L1Loss
132
+ loss_weight: 1.0
133
+ reduction: mean
134
+ # perceptual loss (content and style losses)
135
+ perceptual_opt:
136
+ type: PerceptualLoss
137
+ layer_weights:
138
+ # before relu
139
+ 'conv1_2': 0.1
140
+ 'conv2_2': 0.1
141
+ 'conv3_4': 1
142
+ 'conv4_4': 1
143
+ 'conv5_4': 1
144
+ vgg_type: vgg19
145
+ use_input_norm: true
146
+ perceptual_weight: !!float 1.0
147
+ style_weight: 0
148
+ range_norm: false
149
+ criterion: l1
150
+ # gan loss
151
+ gan_opt:
152
+ type: GANLoss
153
+ gan_type: vanilla
154
+ real_label_val: 1.0
155
+ fake_label_val: 0.0
156
+ loss_weight: !!float 1e-1
157
+
158
+ net_d_iters: 1
159
+ net_d_init_iters: 0
160
+
161
+ # Uncomment these for validation
162
+ # validation settings
163
+ # val:
164
+ # val_freq: !!float 5e3
165
+ # save_img: True
166
+
167
+ # metrics:
168
+ # psnr: # metric name
169
+ # type: calculate_psnr
170
+ # crop_border: 4
171
+ # test_y_channel: false
172
+
173
+ # logging settings
174
+ logger:
175
+ print_freq: 100
176
+ save_checkpoint_freq: !!float 5e3
177
+ use_tb_logger: true
178
+ wandb:
179
+ project: ~
180
+ resume_id: ~
181
+
182
+ # dist training settings
183
+ dist_params:
184
+ backend: nccl
185
+ port: 29500
options/train_realesrnet_x2plus.yml ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRNetx2plus_1000k_B12G4
3
+ model_type: RealESRNetModel
4
+ scale: 2
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRNetModel ----------------- #
9
+ gt_usm: True # USM the ground-truth
10
+
11
+ # the first degradation process
12
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
13
+ resize_range: [0.15, 1.5]
14
+ gaussian_noise_prob: 0.5
15
+ noise_range: [1, 30]
16
+ poisson_scale_range: [0.05, 3]
17
+ gray_noise_prob: 0.4
18
+ jpeg_range: [30, 95]
19
+
20
+ # the second degradation process
21
+ second_blur_prob: 0.8
22
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
23
+ resize_range2: [0.3, 1.2]
24
+ gaussian_noise_prob2: 0.5
25
+ noise_range2: [1, 25]
26
+ poisson_scale_range2: [0.05, 2.5]
27
+ gray_noise_prob2: 0.4
28
+ jpeg_range2: [30, 95]
29
+
30
+ gt_size: 256
31
+ queue_size: 180
32
+
33
+ # dataset and data loader settings
34
+ datasets:
35
+ train:
36
+ name: DF2K+OST
37
+ type: RealESRGANDataset
38
+ dataroot_gt: datasets/DF2K
39
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
40
+ io_backend:
41
+ type: disk
42
+
43
+ blur_kernel_size: 21
44
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
45
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
46
+ sinc_prob: 0.1
47
+ blur_sigma: [0.2, 3]
48
+ betag_range: [0.5, 4]
49
+ betap_range: [1, 2]
50
+
51
+ blur_kernel_size2: 21
52
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
53
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
54
+ sinc_prob2: 0.1
55
+ blur_sigma2: [0.2, 1.5]
56
+ betag_range2: [0.5, 4]
57
+ betap_range2: [1, 2]
58
+
59
+ final_sinc_prob: 0.8
60
+
61
+ gt_size: 256
62
+ use_hflip: True
63
+ use_rot: False
64
+
65
+ # data loader
66
+ use_shuffle: true
67
+ num_worker_per_gpu: 5
68
+ batch_size_per_gpu: 12
69
+ dataset_enlarge_ratio: 1
70
+ prefetch_mode: ~
71
+
72
+ # Uncomment these for validation
73
+ # val:
74
+ # name: validation
75
+ # type: PairedImageDataset
76
+ # dataroot_gt: path_to_gt
77
+ # dataroot_lq: path_to_lq
78
+ # io_backend:
79
+ # type: disk
80
+
81
+ # network structures
82
+ network_g:
83
+ type: RRDBNet
84
+ num_in_ch: 3
85
+ num_out_ch: 3
86
+ num_feat: 64
87
+ num_block: 23
88
+ num_grow_ch: 32
89
+ scale: 2
90
+
91
+ # path
92
+ path:
93
+ pretrain_network_g: experiments/pretrained_models/RealESRGAN_x4plus.pth
94
+ param_key_g: params_ema
95
+ strict_load_g: False
96
+ resume_state: ~
97
+
98
+ # training settings
99
+ train:
100
+ ema_decay: 0.999
101
+ optim_g:
102
+ type: Adam
103
+ lr: !!float 2e-4
104
+ weight_decay: 0
105
+ betas: [0.9, 0.99]
106
+
107
+ scheduler:
108
+ type: MultiStepLR
109
+ milestones: [1000000]
110
+ gamma: 0.5
111
+
112
+ total_iter: 1000000
113
+ warmup_iter: -1 # no warm up
114
+
115
+ # losses
116
+ pixel_opt:
117
+ type: L1Loss
118
+ loss_weight: 1.0
119
+ reduction: mean
120
+
121
+ # Uncomment these for validation
122
+ # validation settings
123
+ # val:
124
+ # val_freq: !!float 5e3
125
+ # save_img: True
126
+
127
+ # metrics:
128
+ # psnr: # metric name
129
+ # type: calculate_psnr
130
+ # crop_border: 4
131
+ # test_y_channel: false
132
+
133
+ # logging settings
134
+ logger:
135
+ print_freq: 100
136
+ save_checkpoint_freq: !!float 5e3
137
+ use_tb_logger: true
138
+ wandb:
139
+ project: ~
140
+ resume_id: ~
141
+
142
+ # dist training settings
143
+ dist_params:
144
+ backend: nccl
145
+ port: 29500
options/train_realesrnet_x4plus.yml ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRNetx4plus_1000k_B12G4
3
+ model_type: RealESRNetModel
4
+ scale: 4
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRNetModel ----------------- #
9
+ gt_usm: True # USM the ground-truth
10
+
11
+ # the first degradation process
12
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
13
+ resize_range: [0.15, 1.5]
14
+ gaussian_noise_prob: 0.5
15
+ noise_range: [1, 30]
16
+ poisson_scale_range: [0.05, 3]
17
+ gray_noise_prob: 0.4
18
+ jpeg_range: [30, 95]
19
+
20
+ # the second degradation process
21
+ second_blur_prob: 0.8
22
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
23
+ resize_range2: [0.3, 1.2]
24
+ gaussian_noise_prob2: 0.5
25
+ noise_range2: [1, 25]
26
+ poisson_scale_range2: [0.05, 2.5]
27
+ gray_noise_prob2: 0.4
28
+ jpeg_range2: [30, 95]
29
+
30
+ gt_size: 256
31
+ queue_size: 180
32
+
33
+ # dataset and data loader settings
34
+ datasets:
35
+ train:
36
+ name: DF2K+OST
37
+ type: RealESRGANDataset
38
+ dataroot_gt: datasets/DF2K
39
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
40
+ io_backend:
41
+ type: disk
42
+
43
+ blur_kernel_size: 21
44
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
45
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
46
+ sinc_prob: 0.1
47
+ blur_sigma: [0.2, 3]
48
+ betag_range: [0.5, 4]
49
+ betap_range: [1, 2]
50
+
51
+ blur_kernel_size2: 21
52
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
53
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
54
+ sinc_prob2: 0.1
55
+ blur_sigma2: [0.2, 1.5]
56
+ betag_range2: [0.5, 4]
57
+ betap_range2: [1, 2]
58
+
59
+ final_sinc_prob: 0.8
60
+
61
+ gt_size: 256
62
+ use_hflip: True
63
+ use_rot: False
64
+
65
+ # data loader
66
+ use_shuffle: true
67
+ num_worker_per_gpu: 5
68
+ batch_size_per_gpu: 12
69
+ dataset_enlarge_ratio: 1
70
+ prefetch_mode: ~
71
+
72
+ # Uncomment these for validation
73
+ # val:
74
+ # name: validation
75
+ # type: PairedImageDataset
76
+ # dataroot_gt: path_to_gt
77
+ # dataroot_lq: path_to_lq
78
+ # io_backend:
79
+ # type: disk
80
+
81
+ # network structures
82
+ network_g:
83
+ type: RRDBNet
84
+ num_in_ch: 3
85
+ num_out_ch: 3
86
+ num_feat: 64
87
+ num_block: 23
88
+ num_grow_ch: 32
89
+
90
+ # path
91
+ path:
92
+ pretrain_network_g: experiments/pretrained_models/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth
93
+ param_key_g: params_ema
94
+ strict_load_g: true
95
+ resume_state: ~
96
+
97
+ # training settings
98
+ train:
99
+ ema_decay: 0.999
100
+ optim_g:
101
+ type: Adam
102
+ lr: !!float 2e-4
103
+ weight_decay: 0
104
+ betas: [0.9, 0.99]
105
+
106
+ scheduler:
107
+ type: MultiStepLR
108
+ milestones: [1000000]
109
+ gamma: 0.5
110
+
111
+ total_iter: 1000000
112
+ warmup_iter: -1 # no warm up
113
+
114
+ # losses
115
+ pixel_opt:
116
+ type: L1Loss
117
+ loss_weight: 1.0
118
+ reduction: mean
119
+
120
+ # Uncomment these for validation
121
+ # validation settings
122
+ # val:
123
+ # val_freq: !!float 5e3
124
+ # save_img: True
125
+
126
+ # metrics:
127
+ # psnr: # metric name
128
+ # type: calculate_psnr
129
+ # crop_border: 4
130
+ # test_y_channel: false
131
+
132
+ # logging settings
133
+ logger:
134
+ print_freq: 100
135
+ save_checkpoint_freq: !!float 5e3
136
+ use_tb_logger: true
137
+ wandb:
138
+ project: ~
139
+ resume_id: ~
140
+
141
+ # dist training settings
142
+ dist_params:
143
+ backend: nccl
144
+ port: 29500
realesrgan/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ from .archs import *
3
+ from .data import *
4
+ from .models import *
5
+ from .utils import *
6
+ from .version import *
realesrgan/archs/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import arch modules for registry
6
+ # scan all the files that end with '_arch.py' under the archs folder
7
+ arch_folder = osp.dirname(osp.abspath(__file__))
8
+ arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
9
+ # import all the arch modules
10
+ _arch_modules = [importlib.import_module(f'realesrgan.archs.{file_name}') for file_name in arch_filenames]
realesrgan/archs/discriminator_arch.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from basicsr.utils.registry import ARCH_REGISTRY
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+ from torch.nn.utils import spectral_norm
5
+
6
+
7
+ @ARCH_REGISTRY.register()
8
+ class UNetDiscriminatorSN(nn.Module):
9
+ """Defines a U-Net discriminator with spectral normalization (SN)
10
+
11
+ It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
12
+
13
+ Arg:
14
+ num_in_ch (int): Channel number of inputs. Default: 3.
15
+ num_feat (int): Channel number of base intermediate features. Default: 64.
16
+ skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
17
+ """
18
+
19
+ def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
20
+ super(UNetDiscriminatorSN, self).__init__()
21
+ self.skip_connection = skip_connection
22
+ norm = spectral_norm
23
+ # the first convolution
24
+ self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
25
+ # downsample
26
+ self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
27
+ self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
28
+ self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
29
+ # upsample
30
+ self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
31
+ self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
32
+ self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
33
+ # extra convolutions
34
+ self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
35
+ self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
36
+ self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
37
+
38
+ def forward(self, x):
39
+ # downsample
40
+ x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
41
+ x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
42
+ x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
43
+ x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
44
+
45
+ # upsample
46
+ x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
47
+ x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
48
+
49
+ if self.skip_connection:
50
+ x4 = x4 + x2
51
+ x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
52
+ x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
53
+
54
+ if self.skip_connection:
55
+ x5 = x5 + x1
56
+ x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
57
+ x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
58
+
59
+ if self.skip_connection:
60
+ x6 = x6 + x0
61
+
62
+ # extra convolutions
63
+ out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
64
+ out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
65
+ out = self.conv9(out)
66
+
67
+ return out
realesrgan/archs/srvgg_arch.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from basicsr.utils.registry import ARCH_REGISTRY
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+
6
+ @ARCH_REGISTRY.register()
7
+ class SRVGGNetCompact(nn.Module):
8
+ """A compact VGG-style network structure for super-resolution.
9
+
10
+ It is a compact network structure, which performs upsampling in the last layer and no convolution is
11
+ conducted on the HR feature space.
12
+
13
+ Args:
14
+ num_in_ch (int): Channel number of inputs. Default: 3.
15
+ num_out_ch (int): Channel number of outputs. Default: 3.
16
+ num_feat (int): Channel number of intermediate features. Default: 64.
17
+ num_conv (int): Number of convolution layers in the body network. Default: 16.
18
+ upscale (int): Upsampling factor. Default: 4.
19
+ act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
20
+ """
21
+
22
+ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
23
+ super(SRVGGNetCompact, self).__init__()
24
+ self.num_in_ch = num_in_ch
25
+ self.num_out_ch = num_out_ch
26
+ self.num_feat = num_feat
27
+ self.num_conv = num_conv
28
+ self.upscale = upscale
29
+ self.act_type = act_type
30
+
31
+ self.body = nn.ModuleList()
32
+ # the first conv
33
+ self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
34
+ # the first activation
35
+ if act_type == 'relu':
36
+ activation = nn.ReLU(inplace=True)
37
+ elif act_type == 'prelu':
38
+ activation = nn.PReLU(num_parameters=num_feat)
39
+ elif act_type == 'leakyrelu':
40
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
41
+ self.body.append(activation)
42
+
43
+ # the body structure
44
+ for _ in range(num_conv):
45
+ self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
46
+ # activation
47
+ if act_type == 'relu':
48
+ activation = nn.ReLU(inplace=True)
49
+ elif act_type == 'prelu':
50
+ activation = nn.PReLU(num_parameters=num_feat)
51
+ elif act_type == 'leakyrelu':
52
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
53
+ self.body.append(activation)
54
+
55
+ # the last conv
56
+ self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
57
+ # upsample
58
+ self.upsampler = nn.PixelShuffle(upscale)
59
+
60
+ def forward(self, x):
61
+ out = x
62
+ for i in range(0, len(self.body)):
63
+ out = self.body[i](out)
64
+
65
+ out = self.upsampler(out)
66
+ # add the nearest upsampled image, so that the network learns the residual
67
+ base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
68
+ out += base
69
+ return out
realesrgan/data/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import dataset modules for registry
6
+ # scan all the files that end with '_dataset.py' under the data folder
7
+ data_folder = osp.dirname(osp.abspath(__file__))
8
+ dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
9
+ # import all the dataset modules
10
+ _dataset_modules = [importlib.import_module(f'realesrgan.data.{file_name}') for file_name in dataset_filenames]
realesrgan/data/realesrgan_dataset.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import os.path as osp
6
+ import random
7
+ import time
8
+ import torch
9
+ from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
10
+ from basicsr.data.transforms import augment
11
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
12
+ from basicsr.utils.registry import DATASET_REGISTRY
13
+ from torch.utils import data as data
14
+
15
+
16
+ @DATASET_REGISTRY.register()
17
+ class RealESRGANDataset(data.Dataset):
18
+ """Dataset used for Real-ESRGAN model:
19
+ Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
20
+
21
+ It loads gt (Ground-Truth) images, and augments them.
22
+ It also generates blur kernels and sinc kernels for generating low-quality images.
23
+ Note that the low-quality images are processed in tensors on GPUS for faster processing.
24
+
25
+ Args:
26
+ opt (dict): Config for train datasets. It contains the following keys:
27
+ dataroot_gt (str): Data root path for gt.
28
+ meta_info (str): Path for meta information file.
29
+ io_backend (dict): IO backend type and other kwarg.
30
+ use_hflip (bool): Use horizontal flips.
31
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
32
+ Please see more options in the codes.
33
+ """
34
+
35
+ def __init__(self, opt):
36
+ super(RealESRGANDataset, self).__init__()
37
+ self.opt = opt
38
+ self.file_client = None
39
+ self.io_backend_opt = opt['io_backend']
40
+ self.gt_folder = opt['dataroot_gt']
41
+
42
+ # file client (lmdb io backend)
43
+ if self.io_backend_opt['type'] == 'lmdb':
44
+ self.io_backend_opt['db_paths'] = [self.gt_folder]
45
+ self.io_backend_opt['client_keys'] = ['gt']
46
+ if not self.gt_folder.endswith('.lmdb'):
47
+ raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
48
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
49
+ self.paths = [line.split('.')[0] for line in fin]
50
+ else:
51
+ # disk backend with meta_info
52
+ # Each line in the meta_info describes the relative path to an image
53
+ with open(self.opt['meta_info']) as fin:
54
+ paths = [line.strip().split(' ')[0] for line in fin]
55
+ self.paths = [os.path.join(self.gt_folder, v) for v in paths]
56
+
57
+ # blur settings for the first degradation
58
+ self.blur_kernel_size = opt['blur_kernel_size']
59
+ self.kernel_list = opt['kernel_list']
60
+ self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
61
+ self.blur_sigma = opt['blur_sigma']
62
+ self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
63
+ self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
64
+ self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
65
+
66
+ # blur settings for the second degradation
67
+ self.blur_kernel_size2 = opt['blur_kernel_size2']
68
+ self.kernel_list2 = opt['kernel_list2']
69
+ self.kernel_prob2 = opt['kernel_prob2']
70
+ self.blur_sigma2 = opt['blur_sigma2']
71
+ self.betag_range2 = opt['betag_range2']
72
+ self.betap_range2 = opt['betap_range2']
73
+ self.sinc_prob2 = opt['sinc_prob2']
74
+
75
+ # a final sinc filter
76
+ self.final_sinc_prob = opt['final_sinc_prob']
77
+
78
+ self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
79
+ # TODO: kernel range is now hard-coded, should be in the configure file
80
+ self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
81
+ self.pulse_tensor[10, 10] = 1
82
+
83
+ def __getitem__(self, index):
84
+ if self.file_client is None:
85
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
86
+
87
+ # -------------------------------- Load gt images -------------------------------- #
88
+ # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
89
+ gt_path = self.paths[index]
90
+ # avoid errors caused by high latency in reading files
91
+ retry = 3
92
+ while retry > 0:
93
+ try:
94
+ img_bytes = self.file_client.get(gt_path, 'gt')
95
+ except (IOError, OSError) as e:
96
+ logger = get_root_logger()
97
+ logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
98
+ # change another file to read
99
+ index = random.randint(0, self.__len__())
100
+ gt_path = self.paths[index]
101
+ time.sleep(1) # sleep 1s for occasional server congestion
102
+ else:
103
+ break
104
+ finally:
105
+ retry -= 1
106
+ img_gt = imfrombytes(img_bytes, float32=True)
107
+
108
+ # -------------------- Do augmentation for training: flip, rotation -------------------- #
109
+ img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
110
+
111
+ # crop or pad to 400
112
+ # TODO: 400 is hard-coded. You may change it accordingly
113
+ h, w = img_gt.shape[0:2]
114
+ crop_pad_size = 400
115
+ # pad
116
+ if h < crop_pad_size or w < crop_pad_size:
117
+ pad_h = max(0, crop_pad_size - h)
118
+ pad_w = max(0, crop_pad_size - w)
119
+ img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
120
+ # crop
121
+ if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
122
+ h, w = img_gt.shape[0:2]
123
+ # randomly choose top and left coordinates
124
+ top = random.randint(0, h - crop_pad_size)
125
+ left = random.randint(0, w - crop_pad_size)
126
+ img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
127
+
128
+ # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
129
+ kernel_size = random.choice(self.kernel_range)
130
+ if np.random.uniform() < self.opt['sinc_prob']:
131
+ # this sinc filter setting is for kernels ranging from [7, 21]
132
+ if kernel_size < 13:
133
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
134
+ else:
135
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
136
+ kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
137
+ else:
138
+ kernel = random_mixed_kernels(
139
+ self.kernel_list,
140
+ self.kernel_prob,
141
+ kernel_size,
142
+ self.blur_sigma,
143
+ self.blur_sigma, [-math.pi, math.pi],
144
+ self.betag_range,
145
+ self.betap_range,
146
+ noise_range=None)
147
+ # pad kernel
148
+ pad_size = (21 - kernel_size) // 2
149
+ kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
150
+
151
+ # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
152
+ kernel_size = random.choice(self.kernel_range)
153
+ if np.random.uniform() < self.opt['sinc_prob2']:
154
+ if kernel_size < 13:
155
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
156
+ else:
157
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
158
+ kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
159
+ else:
160
+ kernel2 = random_mixed_kernels(
161
+ self.kernel_list2,
162
+ self.kernel_prob2,
163
+ kernel_size,
164
+ self.blur_sigma2,
165
+ self.blur_sigma2, [-math.pi, math.pi],
166
+ self.betag_range2,
167
+ self.betap_range2,
168
+ noise_range=None)
169
+
170
+ # pad kernel
171
+ pad_size = (21 - kernel_size) // 2
172
+ kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
173
+
174
+ # ------------------------------------- the final sinc kernel ------------------------------------- #
175
+ if np.random.uniform() < self.opt['final_sinc_prob']:
176
+ kernel_size = random.choice(self.kernel_range)
177
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
178
+ sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
179
+ sinc_kernel = torch.FloatTensor(sinc_kernel)
180
+ else:
181
+ sinc_kernel = self.pulse_tensor
182
+
183
+ # BGR to RGB, HWC to CHW, numpy to tensor
184
+ img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
185
+ kernel = torch.FloatTensor(kernel)
186
+ kernel2 = torch.FloatTensor(kernel2)
187
+
188
+ return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
189
+ return return_d
190
+
191
+ def __len__(self):
192
+ return len(self.paths)
realesrgan/data/realesrgan_paired_dataset.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb
3
+ from basicsr.data.transforms import augment, paired_random_crop
4
+ from basicsr.utils import FileClient, imfrombytes, img2tensor
5
+ from basicsr.utils.registry import DATASET_REGISTRY
6
+ from torch.utils import data as data
7
+ from torchvision.transforms.functional import normalize
8
+
9
+
10
+ @DATASET_REGISTRY.register()
11
+ class RealESRGANPairedDataset(data.Dataset):
12
+ """Paired image dataset for image restoration.
13
+
14
+ Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs.
15
+
16
+ There are three modes:
17
+ 1. 'lmdb': Use lmdb files.
18
+ If opt['io_backend'] == lmdb.
19
+ 2. 'meta_info': Use meta information file to generate paths.
20
+ If opt['io_backend'] != lmdb and opt['meta_info'] is not None.
21
+ 3. 'folder': Scan folders to generate paths.
22
+ The rest.
23
+
24
+ Args:
25
+ opt (dict): Config for train datasets. It contains the following keys:
26
+ dataroot_gt (str): Data root path for gt.
27
+ dataroot_lq (str): Data root path for lq.
28
+ meta_info (str): Path for meta information file.
29
+ io_backend (dict): IO backend type and other kwarg.
30
+ filename_tmpl (str): Template for each filename. Note that the template excludes the file extension.
31
+ Default: '{}'.
32
+ gt_size (int): Cropped patched size for gt patches.
33
+ use_hflip (bool): Use horizontal flips.
34
+ use_rot (bool): Use rotation (use vertical flip and transposing h
35
+ and w for implementation).
36
+
37
+ scale (bool): Scale, which will be added automatically.
38
+ phase (str): 'train' or 'val'.
39
+ """
40
+
41
+ def __init__(self, opt):
42
+ super(RealESRGANPairedDataset, self).__init__()
43
+ self.opt = opt
44
+ self.file_client = None
45
+ self.io_backend_opt = opt['io_backend']
46
+ # mean and std for normalizing the input images
47
+ self.mean = opt['mean'] if 'mean' in opt else None
48
+ self.std = opt['std'] if 'std' in opt else None
49
+
50
+ self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
51
+ self.filename_tmpl = opt['filename_tmpl'] if 'filename_tmpl' in opt else '{}'
52
+
53
+ # file client (lmdb io backend)
54
+ if self.io_backend_opt['type'] == 'lmdb':
55
+ self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
56
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
57
+ self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt'])
58
+ elif 'meta_info' in self.opt and self.opt['meta_info'] is not None:
59
+ # disk backend with meta_info
60
+ # Each line in the meta_info describes the relative path to an image
61
+ with open(self.opt['meta_info']) as fin:
62
+ paths = [line.strip() for line in fin]
63
+ self.paths = []
64
+ for path in paths:
65
+ gt_path, lq_path = path.split(', ')
66
+ gt_path = os.path.join(self.gt_folder, gt_path)
67
+ lq_path = os.path.join(self.lq_folder, lq_path)
68
+ self.paths.append(dict([('gt_path', gt_path), ('lq_path', lq_path)]))
69
+ else:
70
+ # disk backend
71
+ # it will scan the whole folder to get meta info
72
+ # it will be time-consuming for folders with too many files. It is recommended using an extra meta txt file
73
+ self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl)
74
+
75
+ def __getitem__(self, index):
76
+ if self.file_client is None:
77
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
78
+
79
+ scale = self.opt['scale']
80
+
81
+ # Load gt and lq images. Dimension order: HWC; channel order: BGR;
82
+ # image range: [0, 1], float32.
83
+ gt_path = self.paths[index]['gt_path']
84
+ img_bytes = self.file_client.get(gt_path, 'gt')
85
+ img_gt = imfrombytes(img_bytes, float32=True)
86
+ lq_path = self.paths[index]['lq_path']
87
+ img_bytes = self.file_client.get(lq_path, 'lq')
88
+ img_lq = imfrombytes(img_bytes, float32=True)
89
+
90
+ # augmentation for training
91
+ if self.opt['phase'] == 'train':
92
+ gt_size = self.opt['gt_size']
93
+ # random crop
94
+ img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path)
95
+ # flip, rotation
96
+ img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_hflip'], self.opt['use_rot'])
97
+
98
+ # BGR to RGB, HWC to CHW, numpy to tensor
99
+ img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
100
+ # normalize
101
+ if self.mean is not None or self.std is not None:
102
+ normalize(img_lq, self.mean, self.std, inplace=True)
103
+ normalize(img_gt, self.mean, self.std, inplace=True)
104
+
105
+ return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path}
106
+
107
+ def __len__(self):
108
+ return len(self.paths)
realesrgan/models/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import model modules for registry
6
+ # scan all the files that end with '_model.py' under the model folder
7
+ model_folder = osp.dirname(osp.abspath(__file__))
8
+ model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')]
9
+ # import all the model modules
10
+ _model_modules = [importlib.import_module(f'realesrgan.models.{file_name}') for file_name in model_filenames]