Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,073 Bytes
650c805 5c77742 3d65503 650c805 6ef117e 650c805 6ef117e 650c805 6ef117e 650c805 6ef117e 650c805 3d65503 650c805 1a44fd0 3d65503 650c805 6ef117e 650c805 3d65503 650c805 6ef117e 650c805 6ef117e 650c805 1a44fd0 650c805 3d65503 460db52 1a44fd0 650c805 460db52 3d65503 650c805 1a44fd0 650c805 1a44fd0 650c805 6ef117e 650c805 6ef117e 650c805 6ef117e 650c805 6ef117e 650c805 1a44fd0 650c805 1a44fd0 6ef117e 650c805 1a44fd0 650c805 6ef117e 650c805 6ef117e 650c805 6ef117e 650c805 1a44fd0 650c805 1a44fd0 650c805 1a44fd0 650c805 6ef117e 3d65503 6ef117e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# utils/ai_generator_diffusers_flux.py
import os
import utils.constants as constants
import spaces
import torch
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
import accelerate
import transformers
import safetensors
import xformers
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
from PIL import Image
from tempfile import NamedTemporaryFile
from src.condition import Condition
from utils.image_utils import (
crop_and_resize_image,
)
from utils.version_info import (
get_torch_info,
get_diffusers_version,
get_transformers_version,
get_xformers_version
)
from utils.lora_details import get_trigger_words, approximate_token_count, split_prompt_precisely
from utils.color_utils import detect_color_format
import utils.misc as misc
from pathlib import Path
import warnings
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
#print(torch.__version__) # Ensure it's 2.0 or newer
#print(torch.cuda.is_available()) # Ensure CUDA is available
PIPELINE_CLASSES = {
"FluxPipeline": FluxPipeline,
"FluxImg2ImgPipeline": FluxImg2ImgPipeline
}
@spaces.GPU(duration=140)
def generate_image_from_text(
text,
model_name="black-forest-labs/FLUX.1-dev",
lora_weights=None,
conditioned_image=None,
image_width=1344,
image_height=848,
guidance_scale=3.5,
num_inference_steps=50,
seed=0,
additional_parameters=None
):
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device:{device}\nmodel_name:{model_name}\n")
pipe = FluxPipeline.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
).to(device)
pipe = pipe.to(device)
pipe.enable_model_cpu_offload()
# Load and apply LoRA weights
if lora_weights:
for lora_weight in lora_weights:
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
if lora_configs:
for config in lora_configs:
weight_name = config.get("weight_name")
adapter_name = config.get("adapter_name")
pipe.load_lora_weights(
lora_weight,
weight_name=weight_name,
adapter_name=adapter_name,
use_auth_token=constants.HF_API_TOKEN
)
else:
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
generator = torch.Generator(device=device).manual_seed(seed)
conditions = []
if conditioned_image is not None:
conditioned_image = crop_and_resize_image(conditioned_image, 1024, 1024)
condition = Condition("subject", conditioned_image)
conditions.append(condition)
generate_params = {
"prompt": text,
"height": image_height,
"width": image_width,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"conditions": conditions if conditions else None
}
if additional_parameters:
generate_params.update(additional_parameters)
generate_params = {k: v for k, v in generate_params.items() if v is not None}
result = pipe(**generate_params)
image = result.images[0]
pipe.unload_lora_weights()
return image
@spaces.GPU(duration=140)
def generate_image_lowmem(
text,
neg_prompt=None,
model_name="black-forest-labs/FLUX.1-dev",
lora_weights=None,
conditioned_image=None,
image_width=1368,
image_height=848,
guidance_scale=3.5,
num_inference_steps=30,
seed=0,
true_cfg_scale=1.0,
pipeline_name="FluxPipeline",
strength=0.75,
additional_parameters=None
):
print(f"\n {get_torch_info()}\n")
# Retrieve the pipeline class from the mapping
pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
if not pipeline_class:
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
f"Available options: {list(PIPELINE_CLASSES.keys())}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
# Disable gradient calculations
with torch.no_grad():
# Initialize the pipeline inside the context manager
pipe = pipeline_class.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.bfloat32
).to(device)
# Optionally, don't use CPU offload if not necessary
pipe.enable_model_cpu_offload()
# alternative version that may be more efficient
# pipe.enable_sequential_cpu_offload()
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
if flash_attention_enabled == False:
#Enable xFormers memory-efficient attention (optional)
pipe.enable_xformers_memory_efficient_attention()
print("\nEnabled xFormers memory-efficient attention.\n")
else:
pipe.attn_implementation="flash_attention_2"
print("\nEnabled flash_attention_2.\n")
if pipeline_name == "FluxPipeline":
pipe.enable_vae_tiling()
# Load LoRA weights
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
if lora_weights:
for lora_weight in lora_weights:
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
lora_weight_set = False
if lora_configs:
for config in lora_configs:
# Load LoRA weights with optional weight_name and adapter_name
if 'weight_name' in config:
weight_name = config.get("weight_name")
adapter_name = config.get("adapter_name")
lora_collection = config.get("lora_collection")
if weight_name and adapter_name and lora_collection and lora_weight_set == False:
pipe.load_lora_weights(
lora_collection,
weight_name=weight_name,
adapter_name=adapter_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
pipe.load_lora_weights(
lora_collection,
weight_name=weight_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
elif weight_name and adapter_name and lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
weight_name=weight_name,
adapter_name=adapter_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
elif weight_name and adapter_name==None and lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
weight_name=weight_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
elif lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
# Apply 'pipe' configurations if present
if 'pipe' in config:
pipe_config = config['pipe']
for method_name, params in pipe_config.items():
method = getattr(pipe, method_name, None)
if method:
print(f"Applying pipe method: {method_name} with params: {params}")
method(**params)
else:
print(f"Method {method_name} not found in pipe.")
else:
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
# Set the random seed for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
conditions = []
if conditioned_image is not None:
conditioned_image = crop_and_resize_image(conditioned_image, image_width, image_height)
condition = Condition("subject", conditioned_image)
conditions.append(condition)
print(f"\nAdded conditioned image.\n {conditioned_image.size}")
# Prepare the parameters for image generation
additional_parameters ={
"strength": strength,
"image": conditioned_image,
}
else:
print("\nNo conditioned image provided.")
if neg_prompt!=None:
true_cfg_scale=1.1
additional_parameters ={
"negative_prompt": neg_prompt,
"true_cfg_scale": true_cfg_scale,
}
# handle long prompts by splitting them
if approximate_token_count(text) > 76:
prompt, prompt2 = split_prompt_precisely(text)
prompt_parameters = {
"prompt" : prompt,
"prompt_2": prompt2
}
else:
prompt_parameters = {
"prompt" :text
}
additional_parameters.update(prompt_parameters)
# Combine all parameters
generate_params = {
"height": image_height,
"width": image_width,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator, }
if additional_parameters:
generate_params.update(additional_parameters)
generate_params = {k: v for k, v in generate_params.items() if v is not None}
print(f"generate_params: {generate_params}")
# Generate the image
result = pipe(**generate_params)
image = result.images[0]
# Clean up
del result
del conditions
del generator
# Delete the pipeline and clear cache
del pipe
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
print(torch.cuda.memory_summary(device=None, abbreviated=False))
return image
def generate_ai_image_local (
map_option,
prompt_textbox_value,
neg_prompt_textbox_value,
model="black-forest-labs/FLUX.1-dev",
lora_weights=None,
conditioned_image=None,
height=512,
width=912,
num_inference_steps=30,
guidance_scale=3.5,
seed=777,
pipeline_name="FluxPipeline",
strength=0.75,
):
try:
if map_option != "Prompt":
prompt = constants.PROMPTS[map_option]
negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "")
else:
prompt = prompt_textbox_value
negative_prompt = neg_prompt_textbox_value or ""
#full_prompt = f"{prompt} {negative_prompt}"
additional_parameters = {}
if lora_weights:
for lora_weight in lora_weights:
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
for config in lora_configs:
if 'parameters' in config:
additional_parameters.update(config['parameters'])
elif 'trigger_words' in config:
trigger_words = get_trigger_words(lora_weight)
prompt = f"{trigger_words} {prompt}"
for key, value in additional_parameters.items():
if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']:
additional_parameters[key] = int(value)
elif key in ['guidance_scale','true_cfg_scale']:
additional_parameters[key] = float(value)
height = additional_parameters.get('height', height)
width = additional_parameters.get('width', width)
num_inference_steps = additional_parameters.get('num_inference_steps', num_inference_steps)
guidance_scale = additional_parameters.get('guidance_scale', guidance_scale)
print("Generating image with the following parameters:")
print(f"Model: {model}")
print(f"LoRA Weights: {lora_weights}")
print(f"Prompt: {prompt}")
print(f"Neg Prompt: {negative_prompt}")
print(f"Height: {height}")
print(f"Width: {width}")
print(f"Number of Inference Steps: {num_inference_steps}")
print(f"Guidance Scale: {guidance_scale}")
print(f"Seed: {seed}")
print(f"Additional Parameters: {additional_parameters}")
print(f"Conditioned Image: {conditioned_image}")
print(f"pipeline: {pipeline_name}")
image = generate_image_lowmem(
text=prompt,
model_name=model,
neg_prompt=negative_prompt,
lora_weights=lora_weights,
conditioned_image=conditioned_image,
image_width=width,
image_height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
seed=seed,
pipeline_name=pipeline_name,
additional_parameters=additional_parameters
)
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
image.save(tmp.name, format="PNG")
constants.temp_files.append(tmp.name)
print(f"Image saved to {tmp.name}")
return tmp.name
except Exception as e:
print(f"Error generating AI image: {e}")
return None
# does not work
#@spaces.GPU(duration=256)
def merge_LoRA_weights(model="black-forest-labs/FLUX.1-dev",
lora_weights="Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"):
model_suffix = model.split("/")[-1]
if model_suffix not in lora_weights:
raise ValueError(f"The model suffix '{model_suffix}' must be in the lora_weights string '{lora_weights}' to proceed.")
pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16)
pipe.load_lora_weights(lora_weights)
pipe.save_lora_weights(os.getenv("TMPDIR"))
lora_name = lora_weights.split("/")[-1] + "-merged"
pipe.save_pretrained(lora_name)
pipe.unload_lora_weights()
|