Spaces:
Running
on
T4
Running
on
T4
File size: 16,488 Bytes
5238467 1897b6f 8e10a53 5238467 925b7f8 efabdc6 9138f15 1897b6f b76a81b 1a6de5e 14af4d8 aef7fad 1897b6f 5238467 595ae94 1a6de5e 595ae94 5238467 1a6de5e efabdc6 5238467 de8ae12 5238467 de8ae12 5238467 aef7fad 1a6de5e ee1911a 1a6de5e 5238467 de8ae12 4f37585 5238467 e3f64dd 1a6de5e e3f64dd 1dda6b6 e3f64dd 5238467 e3f64dd c81e4b7 e3f64dd 14af4d8 e3f64dd 50d48cc e3f64dd 5238467 1a6de5e 14af4d8 e3f64dd d7ef5a5 b76a81b d7ef5a5 b76a81b d7ef5a5 b76a81b d7ef5a5 e3f64dd 14af4d8 e83dc6d 14af4d8 1a6de5e 1897b6f 5d66b58 1a6de5e 5d66b58 23fe483 b76a81b 1a6de5e de8ae12 aef7fad 5238467 de8ae12 0ffc43b de8ae12 bedb522 0ffc43b bedb522 de8ae12 bedb522 de8ae12 5238467 de8ae12 1dda6b6 50d48cc de8ae12 1a6de5e b76a81b de8ae12 1a6de5e 1dda6b6 de8ae12 9766876 de8ae12 9766876 de8ae12 9766876 de8ae12 9766876 de8ae12 9766876 de8ae12 595ae94 de8ae12 595ae94 de8ae12 8e10a53 de8ae12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
from tempfile import NamedTemporaryFile
import argparse
import torch
import gradio as gr
import os
import time
import warnings
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
from audiocraft.data.audio_utils import apply_fade, apply_tafade
from audiocraft.utils.extend import generate_music_segments, add_settings_to_image, INTERRUPTING
import numpy as np
import random
MODEL = None
MODELS = None
IS_SHARED_SPACE = "Surn/UnlimitedMusicGen" in os.environ.get('SPACE_ID', '')
INTERRUPTED = False
UNLOAD_MODEL = False
MOVE_TO_CPU = False
def interrupt_callback():
return INTERRUPTED
def interrupt():
global INTERRUPTING
INTERRUPTING = True
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version):
global MODEL, MODELS, UNLOAD_MODEL
print("Loading model", version)
if MODELS is None:
return MusicGen.get_pretrained(version)
else:
t1 = time.monotonic()
if MODEL is not None:
MODEL.to('cpu') # move to cache
print("Previous model moved to CPU in %.2fs" % (time.monotonic() - t1))
t1 = time.monotonic()
if MODELS.get(version) is None:
print("Loading model %s from disk" % version)
result = MusicGen.get_pretrained(version)
MODELS[version] = result
print("Model loaded in %.2fs" % (time.monotonic() - t1))
return result
result = MODELS[version].to('cuda')
print("Cached model loaded in %.2fs" % (time.monotonic() - t1))
return result
def predict(model, text, melody, duration, dimension, topk, topp, temperature, cfg_coef, background, title, include_settings, settings_font, settings_font_color, seed, overlap=1):
global MODEL, INTERRUPTED, INTERRUPTING
output_segments = None
INTERRUPTED = False
INTERRUPTING = False
if temperature < 0:
raise gr.Error("Temperature must be >= 0.")
if topk < 0:
raise gr.Error("Topk must be non-negative.")
if topp < 0:
raise gr.Error("Topp must be non-negative.")
if MODEL is None or MODEL.name != model:
MODEL = load_model(model)
else:
if MOVE_TO_CPU:
MODEL.to('cuda')
# prevent hacking
duration = min(duration, 720)
overlap = min(overlap, 15)
#
output = None
segment_duration = duration
initial_duration = duration
output_segments = []
while duration > 0:
if not output_segments: # first pass of long or short song
if segment_duration > MODEL.lm.cfg.dataset.segment_duration:
segment_duration = MODEL.lm.cfg.dataset.segment_duration
else:
segment_duration = duration
else: # next pass of long song
if duration + overlap < MODEL.lm.cfg.dataset.segment_duration:
segment_duration = duration + overlap
else:
segment_duration = MODEL.lm.cfg.dataset.segment_duration
# implement seed
if seed < 0:
seed = random.randint(0, 0xffff_ffff_ffff)
torch.manual_seed(seed)
print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap}')
MODEL.set_generation_params(
use_sampling=True,
top_k=topk,
top_p=topp,
temperature=temperature,
cfg_coef=cfg_coef,
duration=segment_duration,
two_step_cfg=False,
rep_penalty=0.5
)
if melody:
# todo return excess duration, load next model and continue in loop structure building up output_segments
if duration > MODEL.lm.cfg.dataset.segment_duration:
output_segments, duration = generate_music_segments(text, melody, seed, MODEL, duration, overlap, MODEL.lm.cfg.dataset.segment_duration)
else:
# pure original code
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
print(melody.shape)
if melody.dim() == 2:
melody = melody[None]
melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
output = MODEL.generate_with_chroma(
descriptions=[text],
melody_wavs=melody,
melody_sample_rate=sr,
progress=True
)
# All output_segments are populated, so we can break the loop or set duration to 0
break
else:
#output = MODEL.generate(descriptions=[text], progress=False)
if not output_segments:
next_segment = MODEL.generate(descriptions=[text], progress=True)
duration -= segment_duration
else:
last_chunk = output_segments[-1][:, :, -overlap*MODEL.sample_rate:]
next_segment = MODEL.generate_continuation(last_chunk, MODEL.sample_rate, descriptions=[text], progress=False)
duration -= segment_duration - overlap
output_segments.append(next_segment)
if INTERRUPTING:
INTERRUPTED = True
INTERRUPTING = False
print("Function execution interrupted!")
raise gr.Error("Interrupted.")
if output_segments:
try:
# Combine the output segments into one long audio file or stack tracks
#output_segments = [segment.detach().cpu().float()[0] for segment in output_segments]
#output = torch.cat(output_segments, dim=dimension)
output = output_segments[0]
for i in range(1, len(output_segments)):
overlap_samples = overlap * MODEL.sample_rate
#stack tracks and fade out/in
overlapping_output_fadeout = output[:, :, -overlap_samples:]
overlapping_output_fadeout = apply_fade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True, curve_end=0.0, current_device=MODEL.device)
#overlapping_output_fadeout = apply_tafade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True,shape="exponential")
overlapping_output_fadein = output_segments[i][:, :, :overlap_samples]
overlapping_output_fadein = apply_fade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, curve_start=0.0, current_device=MODEL.device)
#overlapping_output_fadein = apply_tafade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, shape="linear")
overlapping_output = torch.cat([overlapping_output_fadeout[:, :, :-(overlap_samples // 2)], overlapping_output_fadein],dim=2)
print(f" overlap size Fade:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
##overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=1) #stack tracks
##print(f" overlap size stack:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
#overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=2) #stack tracks
#print(f" overlap size cat:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
output = torch.cat([output[:, :, :-overlap_samples], overlapping_output, output_segments[i][:, :, overlap_samples:]], dim=dimension)
output = output.detach().cpu().float()[0]
except Exception as e:
print(f"Error combining segments: {e}. Using the first segment only.")
output = output_segments[0].detach().cpu().float()[0]
else:
output = output.detach().cpu().float()[0]
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
if include_settings:
video_description = f"{text}\n Duration: {str(initial_duration)} Dimension: {dimension}\n Top-k:{topk} Top-p:{topp}\n Randomness:{temperature}\n cfg:{cfg_coef} overlap: {overlap}\n Seed: {seed}\n Model: {model}\n Melody File:#todo"
background = add_settings_to_image(title, video_description, background_path=background, font=settings_font, font_color=settings_font_color)
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=18, loudness_compressor=True, add_suffix=False, channels=2)
waveform_video = make_waveform(file.name,bg_image=background, bar_count=45)
if MOVE_TO_CPU:
MODEL.to('cpu')
if UNLOAD_MODEL:
MODEL = None
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return waveform_video, seed
def ui(**kwargs):
css="""
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
"""
with gr.Blocks(title="UnlimitedMusicGen", css=css) as demo:
gr.Markdown(
"""
# UnlimitedMusicGen
This is your private demo for [UnlimitedMusicGen](https://github.com/Oncorporation/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
Disclaimer: This won't run on CPU only. Clone this App and run on GPU instance!
Todo: Working on improved Melody Conditioned Music Generation transitions and consistency.
"""
)
if IS_SHARED_SPACE and not torch.cuda.is_available():
gr.Markdown("""
⚠ This Space doesn't work in this shared UI ⚠
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a>
""")
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True, value="4/4 100bpm 320kbps 48khz, Industrial/Electronic Soundtrack, Dark, Intense, Sci-Fi")
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
background= gr.Image(value="./assets/background.png", source="upload", label="Background", shape=(768,512), type="filepath", interactive=True)
include_settings = gr.Checkbox(label="Add Settings to background", value=True, interactive=True)
with gr.Row():
title = gr.Textbox(label="Title", value="UnlimitedMusicGen", interactive=True)
settings_font = gr.Text(label="Settings Font", value="./assets/arial.ttf", interactive=True)
settings_font_color = gr.ColorPicker(label="Settings Font Color", value="#c87f05", interactive=True)
with gr.Row():
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
with gr.Row():
duration = gr.Slider(minimum=1, maximum=720, value=10, label="Duration", interactive=True)
overlap = gr.Slider(minimum=1, maximum=15, value=5, step=1, label="Overlap", interactive=True)
dimension = gr.Slider(minimum=-2, maximum=2, value=2, step=1, label="Dimension", info="determines which direction to add new segements of audio. (1 = stack tracks, 2 = lengthen, -2..0 = ?)", interactive=True)
with gr.Row():
topk = gr.Number(label="Top-k", value=250, precision=0, interactive=True)
topp = gr.Number(label="Top-p", value=0, precision=0, interactive=True)
temperature = gr.Number(label="Randomness Temperature", value=0.75, precision=None, interactive=True)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=5.5, precision=None, interactive=True)
with gr.Row():
seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
gr.Button('\U0001f3b2\ufe0f').style(full_width=False).click(fn=lambda: -1, outputs=[seed], queue=False)
reuse_seed = gr.Button('\u267b\ufe0f').style(full_width=False)
with gr.Column() as c:
output = gr.Video(label="Generated Music")
seed_used = gr.Number(label='Seed used', value=-1, interactive=False)
reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False)
submit.click(predict, inputs=[model, text, melody, duration, dimension, topk, topp, temperature, cfg_coef, background, title, include_settings, settings_font, settings_font_color, seed, overlap], outputs=[output, seed_used])
gr.Examples(
fn=predict,
examples=[
[
"4/4 120bpm 320kbps 48khz, An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
"melody"
],
[
"4/4 120bpm 320kbps 48khz, A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
"melody"
],
[
"4/4 120bpm 320kbps 48khz, 90s rock song with electric guitar and heavy drums",
None,
"medium"
],
[
"4/4 120bpm 320kbps 48khz, a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
"./assets/bach.mp3",
"melody"
],
[
"4/4 320kbps 48khz, lofi slow bpm electro chill with organic samples",
None,
"medium",
],
],
inputs=[text, melody, model],
outputs=[output]
)
# Show the interface
launch_kwargs = {}
share = kwargs.get('share', False)
if share:
launch_kwargs['share'] = share
demo.queue(max_size=15).launch(**launch_kwargs )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
parser.add_argument(
'--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory'
)
parser.add_argument(
'--unload_to_cpu', action='store_true', help='Move the model to main RAM after every generation to save GPU memory but reload faster than after full unload (see above)'
)
parser.add_argument(
'--cache', action='store_true', help='Cache models in RAM to quickly switch between them'
)
args = parser.parse_args()
UNLOAD_MODEL = args.unload_model
MOVE_TO_CPU = args.unload_to_cpu
if args.cache:
MODELS = {}
ui(
unload_to_cpu = MOVE_TO_CPU,
share=args.share
)
|