Spaces:
Running
on
T4
Running
on
T4
File size: 8,987 Bytes
14af4d8 5d66b58 0ffc43b 89b516d 14af4d8 aef7fad 14af4d8 aef7fad 14af4d8 aef7fad 14af4d8 aef7fad 14af4d8 aef7fad efabdc6 14af4d8 aef7fad 14af4d8 aef7fad 14af4d8 efabdc6 e3f64dd efabdc6 e3f64dd 14af4d8 aef7fad 14af4d8 e3f64dd 14af4d8 ee1911a 14af4d8 aef7fad 14af4d8 e83dc6d e3f64dd 14af4d8 5d66b58 0ffc43b 89b516d 0ffc43b 89b516d 0ffc43b aef5578 89b516d 0ffc43b aef5578 0ffc43b aef5578 0ffc43b 89b516d 0ffc43b 5d66b58 0ffc43b 89b516d 5d66b58 0ffc43b 5d66b58 aef7fad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import torch
import math
from audiocraft.models import MusicGen
import numpy as np
from PIL import Image, ImageDraw, ImageFont, ImageColor
import string
import tempfile
import os
import textwrap
import requests
from io import BytesIO
from huggingface_hub import hf_hub_download
def separate_audio_segments(audio, segment_duration=30, overlap=1):
sr, audio_data = audio[0], audio[1]
total_samples = len(audio_data)
segment_samples = sr * segment_duration
overlap_samples = sr * overlap
segments = []
start_sample = 0
while total_samples >= segment_samples:
end_sample = start_sample + segment_samples
segment = audio_data[start_sample:end_sample]
segments.append((sr, segment))
start_sample += segment_samples - overlap_samples
total_samples -= segment_samples - overlap_samples
# Collect the final segment
if total_samples > 0:
segment = audio_data[-segment_samples:]
segments.append((sr, segment))
print(f"separate_audio_segments: {len(segments)} segments")
return segments
def generate_music_segments(text, melody, MODEL, seed, duration:int=10, overlap:int=1, segment_duration:int=30):
# generate audio segments
melody_segments = separate_audio_segments(melody, segment_duration, overlap)
# Create a list to store the melody tensors for each segment
melodys = []
output_segments = []
# Calculate the total number of segments
total_segments = max(math.ceil(duration / segment_duration),1)
# account for overlap
duration = duration + (max((total_segments - 1),0) * overlap)
total_segments = max(math.ceil(duration / segment_duration),1)
#calc excess duration
excess_duration = segment_duration - (total_segments * segment_duration - duration)
print(f"total Segments to Generate: {total_segments} for {duration} seconds. Each segment is {segment_duration} seconds. Excess {excess_duration}")
# If melody_segments is shorter than total_segments, repeat the segments until the total_segments is reached
if len(melody_segments) < total_segments:
#fix melody_segments
for i in range(total_segments - len(melody_segments)):
segment = melody_segments[i]
melody_segments.append(segment)
print(f"melody_segments: {len(melody_segments)} fixed")
# Iterate over the segments to create list of Meldoy tensors
for segment_idx in range(total_segments):
print(f"segment {segment_idx + 1} of {total_segments} \r")
sr, verse = melody_segments[segment_idx][0], torch.from_numpy(melody_segments[segment_idx][1]).to(MODEL.device).float().t().unsqueeze(0)
print(f"shape:{verse.shape} dim:{verse.dim()}")
if verse.dim() == 2:
verse = verse[None]
verse = verse[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
# Append the segment to the melodys list
melodys.append(verse)
torch.manual_seed(seed)
for idx, verse in enumerate(melodys):
print(f"Generating New Melody Segment {idx + 1}: {text}\r")
output = MODEL.generate_with_chroma(
descriptions=[text],
melody_wavs=verse,
melody_sample_rate=sr,
progress=True
)
# Append the generated output to the list of segments
#output_segments.append(output[:, :segment_duration])
output_segments.append(output)
print(f"output_segments: {len(output_segments)}: shape: {output.shape} dim {output.dim()}")
return output_segments, excess_duration
def save_image(image):
"""
Saves a PIL image to a temporary file and returns the file path.
Parameters:
- image: PIL.Image
The PIL image object to be saved.
Returns:
- str or None: The file path where the image was saved,
or None if there was an error saving the image.
"""
temp_dir = tempfile.gettempdir()
temp_file = tempfile.NamedTemporaryFile(suffix=".png", dir=temp_dir, delete=False)
temp_file.close()
file_path = temp_file.name
try:
image.save(file_path)
except Exception as e:
print("Unable to save image:", str(e))
return None
finally:
return file_path
def hex_to_rgba(hex_color):
try:
# Convert hex color to RGBA tuple
rgba = ImageColor.getcolor(hex_color, "RGBA")
except ValueError:
# If the hex color is invalid, default to yellow
rgba = (255,255,0,255)
return rgba
def load_font(font_name, font_size=16):
"""
Load a font using the provided font name and font size.
Parameters:
font_name (str): The name of the font to load. Can be a font name recognized by the system, a URL to download the font file,
a local file path, or a Hugging Face model hub identifier.
font_size (int, optional): The size of the font. Default is 16.
Returns:
ImageFont.FreeTypeFont: The loaded font object.
Notes:
This function attempts to load the font using various methods until a suitable font is found. If the provided font_name
cannot be loaded, it falls back to a default font.
The font_name can be one of the following:
- A font name recognized by the system, which can be loaded using ImageFont.truetype.
- A URL pointing to the font file, which is downloaded using requests and then loaded using ImageFont.truetype.
- A local file path to the font file, which is loaded using ImageFont.truetype.
- A Hugging Face model hub identifier, which downloads the font file from the Hugging Face model hub using hf_hub_download
and then loads it using ImageFont.truetype.
Example:
font = load_font("Arial.ttf", font_size=20)
"""
try:
font = ImageFont.truetype(font_name, font_size)
except (FileNotFoundError, OSError):
try:
font = ImageFont.truetype(font_name, font_size)
print("Font not found. Downloading from Hugging Face model hub...\n")
except:
try:
req = requests.get(font_name)
font = ImageFont.truetype(BytesIO(req.content), font_size)
print("Font not found. Downloading from URL...\n")
except:
try:
font = ImageFont.truetype(hf_hub_download("/assets", font_name), encoding="UTF-8")
print(f"Font not found: {font_name} Using default font\n")
except:
font = ImageFont.load_default()
return font
def add_settings_to_image(title: str = "title", description: str = "", width: int = 768, height: int = 512, background_path: str = "", font: str = "arial.ttf", font_color: str = "#ffffff"):
# Create a new RGBA image with the specified dimensions
image = Image.new("RGBA", (width, height), (255, 255, 255, 0))
# If a background image is specified, open it and paste it onto the image
if background_path == "":
background = Image.new("RGBA", (width, height), (255, 255, 255, 255))
else:
background = Image.open(background_path).convert("RGBA")
#Convert font color to RGBA tuple
font_color = hex_to_rgba(font_color)
# Calculate the center coordinates for placing the text
text_x = width // 2
text_y = height // 2
# Draw the title text at the center top
title_font = load_font(font, 26) # Replace with your desired font and size
title_text = '\n'.join(textwrap.wrap(title, width // 12))
title_x, title_y, title_text_width, title_text_height = title_font.getbbox(title_text)
title_x = max(text_x - (title_text_width // 2), title_x, 0)
title_y = text_y - (height // 2) + 10 # 10 pixels padding from the top
title_draw = ImageDraw.Draw(image)
title_draw.multiline_text((title_x, title_y), title, fill=font_color, font=title_font, align="center")
# Draw the description text two lines below the title
description_font = load_font(font, 16) # Replace with your desired font and size
description_text = '\n'.join(textwrap.wrap(description, width // 12))
description_x, description_y, description_text_width, description_text_height = description_font.getbbox(description_text)
description_x = max(text_x - (description_text_width // 2), description_x, 0)
description_y = title_y + title_text_height + 20 # 20 pixels spacing between title and description
description_draw = ImageDraw.Draw(image)
description_draw.multiline_text((description_x, description_y), description_text, fill=font_color, font=description_font, align="center")
# Calculate the offset to center the image on the background
bg_w, bg_h = background.size
offset = ((bg_w - width) // 2, (bg_h - height) // 2)
# Paste the image onto the background
background.paste(image, offset, mask=image)
# Save the image and return the file path
return save_image(background) |