File size: 8,707 Bytes
099e67a
 
 
 
 
 
 
 
 
 
 
 
 
8a5a9ab
099e67a
 
 
 
 
84661cc
8a5a9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099e67a
 
 
 
 
 
 
 
 
 
 
 
8a5a9ab
099e67a
 
84661cc
099e67a
 
 
 
 
 
 
 
84661cc
099e67a
 
 
 
 
8a5a9ab
 
099e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a5a9ab
099e67a
 
84661cc
8a5a9ab
 
099e67a
 
 
 
8a5a9ab
 
099e67a
8a5a9ab
 
 
 
 
 
 
099e67a
8a5a9ab
099e67a
 
 
 
 
 
 
 
 
 
 
8a5a9ab
 
 
 
 
 
 
 
099e67a
 
8a5a9ab
099e67a
 
 
 
 
 
 
 
 
 
8a5a9ab
 
 
099e67a
 
 
8a5a9ab
099e67a
 
 
 
 
 
 
 
 
 
 
8a5a9ab
 
099e67a
 
 
8a5a9ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from typing import List
import logging
from pathlib import Path
import requests
import base64
import io
from PIL import Image
from datasets import Dataset
from huggingface_hub import HfApi
import os
from mistralai import Mistral

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Mistral OCR setup
api_key = os.environ.get("MISTRAL_API_KEY")
if not api_key:
    raise ValueError("MISTRAL_API_KEY environment variable not set")
client = Mistral(api_key=api_key)

# Function to encode image to base64
def encode_image(image_path):
    try:
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')
    except FileNotFoundError:
        return "Error: The file was not found."
    except Exception as e:
        return f"Error: {e}"

# Function to replace images in markdown with base64 strings
def replace_images_in_markdown(markdown_str: str, images_dict: dict) -> str:
    for img_name, base64_str in images_dict.items():
        markdown_str = markdown_str.replace(f"![{img_name}]({img_name})", f"![{img_name}]({base64_str})")
    return markdown_str

# Function to combine markdown from OCR response
def get_combined_markdown(ocr_response) -> tuple:
    markdowns = []
    raw_markdowns = []
    for page in ocr_response.pages:
        image_data = {}
        for img in page.images:
            image_data[img.id] = img.image_base64
        markdowns.append(replace_images_in_markdown(page.markdown, image_data))
        raw_markdowns.append(page.markdown)
    return "\n\n".join(markdowns), "\n\n".join(raw_markdowns)

# Perform OCR on uploaded file
def perform_ocr_file(file):
    try:
        if file.name.lower().endswith('.pdf'):
            uploaded_pdf = client.files.upload(
                file={
                    "file_name": file.name,
                    "content": open(file.name, "rb"),
                },
                purpose="ocr"
            )
            signed_url = client.files.get_signed_url(file_id=uploaded_pdf.id)
            ocr_response = client.ocr.process(
                model="mistral-ocr-latest",
                document={
                    "type": "document_url",
                    "document_url": signed_url.url,
                },
                include_image_base64=True
            )
            client.files.delete(file_id=uploaded_pdf.id)

        elif file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
            base64_image = encode_image(file.name)
            ocr_response = client.ocr.process(
                model="mistral-ocr-latest",
                document={
                    "type": "image_url",
                    "image_url": f"data:image/jpeg;base64,{base64_image}"
                },
                include_image_base64=True
            )
        else:
            return "Unsupported file type. Please provide a PDF or an image (png, jpeg, jpg).", ""

        combined_markdown, raw_markdown = get_combined_markdown(ocr_response)
        return combined_markdown, raw_markdown
    except Exception as e:
        return f"Error during OCR: {str(e)}", ""

# Function to chunk markdown text
def chunk_markdown(
    markdown_text: str,
    chunk_size: int = 1000,
    chunk_overlap: int = 200,
    preserve_numbering: bool = True
) -> List[Document]:
    if chunk_size <= 0:
        raise ValueError("chunk_size must be positive")
    if chunk_overlap < 0:
        raise ValueError("chunk_overlap cannot be negative")
    if chunk_overlap >= chunk_size:
        raise ValueError("chunk_overlap must be less than chunk_size")

    try:
        document = Document(page_content=markdown_text, metadata={"source": "ocr_output"})
        
        separators = (
            ["\n\d+\.\s+", "\n\n", "\n", ".", " ", ""]
            if preserve_numbering
            else ["\n\n", "\n", ".", " ", ""]
        )

        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=chunk_size,
            chunk_overlap=chunk_overlap,
            length_function=len,
            separators=separators,  # Fixed parameter name
            keep_separator=True,
            add_start_index=True,
            is_separator_regex=preserve_numbering
        )
        
        logger.info("Splitting markdown text into chunks")
        chunks = text_splitter.split_documents([document])
        
        if preserve_numbering:
            merged_chunks = []
            current_chunk = None
            
            for chunk in chunks:
                content = chunk.page_content.strip()
                if current_chunk is None:
                    current_chunk = chunk
                elif content.startswith(tuple(f"{i}." for i in range(10))):
                    if current_chunk:
                        merged_chunks.append(current_chunk)
                    current_chunk = chunk
                else:
                    current_chunk.page_content += "\n" + content
                    current_chunk.metadata["end_index"] = chunk.metadata["start_index"] + len(content)
            
            if current_chunk:
                merged_chunks.append(current_chunk)
            chunks = merged_chunks

        logger.info(f"Created {len(chunks)} chunks")
        return chunks
        
    except Exception as e:
        logger.error(f"Error processing markdown: {str(e)}")
        raise

# Placeholder image generation
def text_to_base64_dummy(text: str, chunk_index: int):
    img = Image.new('RGB', (200, 200), color='white')
    buffer = io.BytesIO()
    img.save(buffer, format="PNG")
    return base64.b64encode(buffer.getvalue()).decode("utf-8")

# Process file: OCR -> Chunk -> Save
def process_file_and_save(file, chunk_size, chunk_overlap, preserve_numbering, hf_token, repo_name):
    try:
        # Step 1: Perform OCR
        combined_markdown, raw_markdown = perform_ocr_file(file)
        if "Error" in combined_markdown:
            return combined_markdown
        
        # Step 2: Chunk the markdown
        chunks = chunk_markdown(combined_markdown, chunk_size, chunk_overlap, preserve_numbering)
        
        # Step 3: Prepare dataset
        data = {
            "chunk_id": [],
            "content": [],
            "metadata": [],
            "page_image": []
        }
        
        for i, chunk in enumerate(chunks):
            data["chunk_id"].append(i)
            data["content"].append(chunk.page_content)
            data["metadata"].append(chunk.metadata)
            img_base64 = None
            if "![image" in chunk.page_content:
                start = chunk.page_content.find("data:image")
                if start != -1:
                    end = chunk.page_content.find(")", start)
                    img_base64 = chunk.page_content[start:end]
            if not img_base64:
                img_base64 = text_to_base64_dummy(chunk.page_content, i)
            data["page_image"].append(img_base64)

        # Step 4: Create and push dataset to Hugging Face
        dataset = Dataset.from_dict(data)
        api = HfApi()
        api.create_repo(repo_id=repo_name, token=hf_token, repo_type="dataset", exist_ok=True)
        dataset.push_to_hub(repo_name, token=hf_token)
        
        return f"Dataset created with {len(chunks)} chunks and saved to Hugging Face at {repo_name}"
    except Exception as e:
        return f"Error: {str(e)}"

# Gradio Interface
with gr.Blocks(title="PDF/Image OCR, Chunking, and Dataset Creator") as demo:
    gr.Markdown("# PDF/Image OCR, Chunking, and Dataset Creator")
    gr.Markdown("Upload a PDF or image, extract text/images with Mistral OCR, chunk the markdown, and save to Hugging Face.")
    
    with gr.Row():
        with gr.Column():
            file_input = gr.File(label="Upload PDF or Image")
            chunk_size = gr.Slider(500, 2000, value=1000, step=100, label="Chunk Size")
            chunk_overlap = gr.Slider(0, 500, value=200, step=50, label="Chunk Overlap")
            preserve_numbering = gr.Checkbox(label="Preserve Numbering", value=True)
            hf_token = gr.Textbox(label="Hugging Face Token", type="password")
            repo_name = gr.Textbox(label="Hugging Face Repository Name (e.g., username/dataset-name)")
            submit_btn = gr.Button("Process and Save")
        
        with gr.Column():
            output = gr.Textbox(label="Result")

    submit_btn.click(
        fn=process_file_and_save,
        inputs=[file_input, chunk_size, chunk_overlap, preserve_numbering, hf_token, repo_name],
        outputs=output
    )

demo.launch(share=True)