PDF2Dataset / app.py
Svngoku's picture
Update app.py
84661cc verified
raw
history blame
8.71 kB
import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from typing import List
import logging
from pathlib import Path
import requests
import base64
import io
from PIL import Image
from datasets import Dataset
from huggingface_hub import HfApi
import os
from mistralai import Mistral
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Mistral OCR setup
api_key = os.environ.get("MISTRAL_API_KEY")
if not api_key:
raise ValueError("MISTRAL_API_KEY environment variable not set")
client = Mistral(api_key=api_key)
# Function to encode image to base64
def encode_image(image_path):
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except FileNotFoundError:
return "Error: The file was not found."
except Exception as e:
return f"Error: {e}"
# Function to replace images in markdown with base64 strings
def replace_images_in_markdown(markdown_str: str, images_dict: dict) -> str:
for img_name, base64_str in images_dict.items():
markdown_str = markdown_str.replace(f"![{img_name}]({img_name})", f"![{img_name}]({base64_str})")
return markdown_str
# Function to combine markdown from OCR response
def get_combined_markdown(ocr_response) -> tuple:
markdowns = []
raw_markdowns = []
for page in ocr_response.pages:
image_data = {}
for img in page.images:
image_data[img.id] = img.image_base64
markdowns.append(replace_images_in_markdown(page.markdown, image_data))
raw_markdowns.append(page.markdown)
return "\n\n".join(markdowns), "\n\n".join(raw_markdowns)
# Perform OCR on uploaded file
def perform_ocr_file(file):
try:
if file.name.lower().endswith('.pdf'):
uploaded_pdf = client.files.upload(
file={
"file_name": file.name,
"content": open(file.name, "rb"),
},
purpose="ocr"
)
signed_url = client.files.get_signed_url(file_id=uploaded_pdf.id)
ocr_response = client.ocr.process(
model="mistral-ocr-latest",
document={
"type": "document_url",
"document_url": signed_url.url,
},
include_image_base64=True
)
client.files.delete(file_id=uploaded_pdf.id)
elif file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
base64_image = encode_image(file.name)
ocr_response = client.ocr.process(
model="mistral-ocr-latest",
document={
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}"
},
include_image_base64=True
)
else:
return "Unsupported file type. Please provide a PDF or an image (png, jpeg, jpg).", ""
combined_markdown, raw_markdown = get_combined_markdown(ocr_response)
return combined_markdown, raw_markdown
except Exception as e:
return f"Error during OCR: {str(e)}", ""
# Function to chunk markdown text
def chunk_markdown(
markdown_text: str,
chunk_size: int = 1000,
chunk_overlap: int = 200,
preserve_numbering: bool = True
) -> List[Document]:
if chunk_size <= 0:
raise ValueError("chunk_size must be positive")
if chunk_overlap < 0:
raise ValueError("chunk_overlap cannot be negative")
if chunk_overlap >= chunk_size:
raise ValueError("chunk_overlap must be less than chunk_size")
try:
document = Document(page_content=markdown_text, metadata={"source": "ocr_output"})
separators = (
["\n\d+\.\s+", "\n\n", "\n", ".", " ", ""]
if preserve_numbering
else ["\n\n", "\n", ".", " ", ""]
)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
separators=separators, # Fixed parameter name
keep_separator=True,
add_start_index=True,
is_separator_regex=preserve_numbering
)
logger.info("Splitting markdown text into chunks")
chunks = text_splitter.split_documents([document])
if preserve_numbering:
merged_chunks = []
current_chunk = None
for chunk in chunks:
content = chunk.page_content.strip()
if current_chunk is None:
current_chunk = chunk
elif content.startswith(tuple(f"{i}." for i in range(10))):
if current_chunk:
merged_chunks.append(current_chunk)
current_chunk = chunk
else:
current_chunk.page_content += "\n" + content
current_chunk.metadata["end_index"] = chunk.metadata["start_index"] + len(content)
if current_chunk:
merged_chunks.append(current_chunk)
chunks = merged_chunks
logger.info(f"Created {len(chunks)} chunks")
return chunks
except Exception as e:
logger.error(f"Error processing markdown: {str(e)}")
raise
# Placeholder image generation
def text_to_base64_dummy(text: str, chunk_index: int):
img = Image.new('RGB', (200, 200), color='white')
buffer = io.BytesIO()
img.save(buffer, format="PNG")
return base64.b64encode(buffer.getvalue()).decode("utf-8")
# Process file: OCR -> Chunk -> Save
def process_file_and_save(file, chunk_size, chunk_overlap, preserve_numbering, hf_token, repo_name):
try:
# Step 1: Perform OCR
combined_markdown, raw_markdown = perform_ocr_file(file)
if "Error" in combined_markdown:
return combined_markdown
# Step 2: Chunk the markdown
chunks = chunk_markdown(combined_markdown, chunk_size, chunk_overlap, preserve_numbering)
# Step 3: Prepare dataset
data = {
"chunk_id": [],
"content": [],
"metadata": [],
"page_image": []
}
for i, chunk in enumerate(chunks):
data["chunk_id"].append(i)
data["content"].append(chunk.page_content)
data["metadata"].append(chunk.metadata)
img_base64 = None
if "![image" in chunk.page_content:
start = chunk.page_content.find("data:image")
if start != -1:
end = chunk.page_content.find(")", start)
img_base64 = chunk.page_content[start:end]
if not img_base64:
img_base64 = text_to_base64_dummy(chunk.page_content, i)
data["page_image"].append(img_base64)
# Step 4: Create and push dataset to Hugging Face
dataset = Dataset.from_dict(data)
api = HfApi()
api.create_repo(repo_id=repo_name, token=hf_token, repo_type="dataset", exist_ok=True)
dataset.push_to_hub(repo_name, token=hf_token)
return f"Dataset created with {len(chunks)} chunks and saved to Hugging Face at {repo_name}"
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
with gr.Blocks(title="PDF/Image OCR, Chunking, and Dataset Creator") as demo:
gr.Markdown("# PDF/Image OCR, Chunking, and Dataset Creator")
gr.Markdown("Upload a PDF or image, extract text/images with Mistral OCR, chunk the markdown, and save to Hugging Face.")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload PDF or Image")
chunk_size = gr.Slider(500, 2000, value=1000, step=100, label="Chunk Size")
chunk_overlap = gr.Slider(0, 500, value=200, step=50, label="Chunk Overlap")
preserve_numbering = gr.Checkbox(label="Preserve Numbering", value=True)
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
repo_name = gr.Textbox(label="Hugging Face Repository Name (e.g., username/dataset-name)")
submit_btn = gr.Button("Process and Save")
with gr.Column():
output = gr.Textbox(label="Result")
submit_btn.click(
fn=process_file_and_save,
inputs=[file_input, chunk_size, chunk_overlap, preserve_numbering, hf_token, repo_name],
outputs=output
)
demo.launch(share=True)