Spaces:
Running
Running
import gradio as gr | |
from langchain_text_splitters import MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter | |
from langchain.schema import Document | |
from typing import List, Dict, Any, Tuple | |
import logging | |
import re | |
import base64 | |
import mimetypes # Added | |
from datasets import Dataset | |
from huggingface_hub import HfApi | |
import huggingface_hub # Added for token checking and errors | |
import os | |
from mistralai import Mistral # Assuming this is the correct import for the client | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# --- Mistral OCR Setup --- | |
api_key = os.environ.get("MISTRAL_API_KEY") | |
if not api_key: | |
logger.warning("MISTRAL_API_KEY environment variable not set. Attempting to use Hugging Face token.") | |
try: | |
api_key = huggingface_hub.get_token() | |
if not api_key: | |
# If running locally, this might still fail if not logged in. | |
logger.warning("Could not retrieve token from Hugging Face login.") | |
# Error will be raised later if client init fails or during HF push if token still missing | |
else: | |
logger.info("Using Hugging Face token as MISTRAL_API_KEY.") | |
except Exception as e: | |
logger.warning(f"Could not check Hugging Face login for token: {e}") | |
# Proceed without API key, client initialization might fail | |
# Initialize Mistral Client | |
client = None | |
if api_key: | |
try: | |
client = Mistral(api_key=api_key) | |
logger.info("Mistral client initialized successfully.") | |
except Exception as e: | |
logger.error(f"Failed to initialize Mistral client: {e}", exc_info=True) | |
# Raise a clearer error for Gradio startup if client fails | |
raise RuntimeError(f"Failed to initialize Mistral client. Check API key and mistralai installation. Error: {e}") | |
else: | |
# This path might be hit if no env var and no HF token found | |
logger.error("Mistral API key is not available. OCR functionality will fail.") | |
# We could raise an error here, or let it fail when client methods are called. | |
# Let's allow Gradio to load but OCR will fail clearly later. | |
# --- Helper Functions --- | |
def encode_image_bytes(image_bytes: bytes) -> str: | |
"""Encodes image bytes to a base64 string.""" | |
return base64.b64encode(image_bytes).decode('utf-8') | |
def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]: | |
""" | |
Combines markdown from OCR pages, replacing image IDs with base64 data URIs. | |
Args: | |
ocr_response: The response object from the Mistral OCR API. | |
Returns: | |
A tuple containing: | |
- combined_markdown_with_images: Markdown string with image references replaced by base64 data URIs. | |
- combined_raw_markdown: Original markdown string without image replacement. | |
- image_data_map: A dictionary mapping image IDs to their base64 data URIs. | |
Raises ValueError on unexpected response structure. | |
""" | |
processed_markdowns = [] | |
raw_markdowns = [] | |
image_data_map = {} # Collect image_id -> base64_data_uri | |
if not hasattr(ocr_response, 'pages') or not ocr_response.pages: | |
logger.warning("OCR response has no 'pages' attribute or pages list is empty.") | |
return "", "", {} | |
try: | |
# Collect all image data first (assuming image_base64 includes data URI prefix from Mistral) | |
for page_idx, page in enumerate(ocr_response.pages): | |
if hasattr(page, 'images') and page.images: | |
for img in page.images: | |
if hasattr(img, 'id') and hasattr(img, 'image_base64') and img.image_base64: | |
image_data_map[img.id] = img.image_base64 # Assuming this is the full data URI | |
else: | |
logger.warning(f"Page {page_idx}: Image object lacks 'id' or valid 'image_base64'. Image: {img}") | |
# else: # Don't warn if a page simply has no images | |
# logger.debug(f"Page {page_idx} has no 'images' attribute or no images found.") | |
# Process markdown for each page | |
for page_idx, page in enumerate(ocr_response.pages): | |
if not hasattr(page, 'markdown'): | |
logger.warning(f"Page {page_idx} in OCR response lacks 'markdown' attribute. Skipping.") | |
continue # Skip page if no markdown | |
current_raw_markdown = page.markdown if page.markdown else "" | |
raw_markdowns.append(current_raw_markdown) | |
current_processed_markdown = current_raw_markdown | |
# Find all image references like  | |
# Regex to find the image ID (content within parentheses) | |
img_refs = re.findall(r"!\[.*?\]\((.*?)\)", current_processed_markdown) | |
for img_id in img_refs: | |
if img_id in image_data_map: | |
base64_data_uri = image_data_map[img_id] | |
# Escape potential regex special characters in img_id before using in replace | |
escaped_img_id = re.escape(img_id) | |
# Replace  with  | |
# Use a specific regex for replacement: find the exact pattern  | |
pattern = r"(!\[.*?\]\()" + escaped_img_id + r"(\))" | |
# Check if replacement target exists before replacing | |
if re.search(pattern, current_processed_markdown): | |
current_processed_markdown = re.sub( | |
pattern, | |
r"\1" + base64_data_uri + r"\2", | |
current_processed_markdown | |
) | |
else: | |
# This case shouldn't happen often if img_id came from findall on the same string | |
logger.warning(f"Page {page_idx}: Found img_id '{img_id}' but couldn't find exact pattern '{pattern}' for replacement.") | |
else: | |
# Only log warning if the ID looks like an expected image ID pattern (e.g., 'image_X') | |
# Avoid warning for regular URLs that might be in the markdown | |
if not img_id.startswith(('http:', 'https:', 'data:')): # Check if it's not already a URL | |
logger.warning(f"Page {page_idx}: Image ID '{img_id}' found in markdown but not in collected image data.") | |
processed_markdowns.append(current_processed_markdown) | |
return "\n\n".join(processed_markdowns), "\n\n".join(raw_markdowns), image_data_map | |
except AttributeError as ae: | |
logger.error(f"Attribute error accessing OCR response structure: {ae}", exc_info=True) | |
raise ValueError(f"Unexpected OCR response structure. Check Mistral API changes. Error: {ae}") | |
except Exception as e: | |
logger.error(f"Error processing OCR response markdown: {e}", exc_info=True) | |
raise | |
def perform_ocr_file(file_obj: Any) -> Tuple[str, str, Dict[str, str]]: | |
""" | |
Performs OCR on an uploaded file (PDF or image) using the Mistral API. | |
Args: | |
file_obj: The file object from Gradio's gr.File component. | |
Returns: | |
A tuple containing: | |
- processed_markdown: Markdown string with base64 images, or error message. | |
- raw_markdown: Original markdown string. | |
- image_data_map: Dictionary mapping image IDs to base64 data URIs. | |
""" | |
if not client: | |
return "Error: Mistral client not initialized. Check API key setup.", "", {} | |
if not file_obj: | |
# This check might be redundant if called from process_file_and_save, but good practice | |
return "Error: No file provided to OCR function.", "", {} | |
try: | |
file_path = file_obj.name # Get the temporary file path from Gradio | |
# Use the original filename if available (Gradio>=4), else use the temp path's basename | |
file_name = getattr(file_obj, 'orig_name', os.path.basename(file_path)) | |
logger.info(f"Performing OCR on file: {file_name} (temp path: {file_path})") | |
# Determine file type from extension | |
file_ext = os.path.splitext(file_name)[1].lower() | |
ocr_response = None | |
uploaded_file_id = None | |
if file_ext == '.pdf': | |
try: | |
with open(file_path, "rb") as f: | |
logger.info(f"Uploading PDF {file_name} to Mistral...") | |
# Pass as tuple (filename, file-like object) | |
uploaded_pdf = client.files.upload( | |
file=(file_name, f), | |
purpose="ocr" | |
) | |
uploaded_file_id = uploaded_pdf.id | |
logger.info(f"PDF uploaded successfully. File ID: {uploaded_file_id}") | |
logger.info(f"Getting signed URL for file ID: {uploaded_file_id}") | |
signed_url_response = client.files.get_signed_url(file_id=uploaded_file_id) | |
logger.info(f"Got signed URL: {signed_url_response.url[:50]}...") | |
logger.info("Sending PDF URL to Mistral OCR (model: mistral-ocr-latest)...") | |
ocr_response = client.ocr.process( | |
model="mistral-ocr-latest", | |
document={ | |
"type": "document_url", | |
"document_url": signed_url_response.url, | |
}, | |
include_image_base64=True | |
) | |
logger.info("OCR processing complete for PDF.") | |
finally: | |
# Ensure cleanup even if OCR fails after upload | |
if uploaded_file_id: | |
try: | |
logger.info(f"Deleting temporary Mistral file: {uploaded_file_id}") | |
client.files.delete(file_id=uploaded_file_id) | |
except Exception as delete_err: | |
logger.warning(f"Failed to delete temporary Mistral file {uploaded_file_id}: {delete_err}") | |
elif file_ext in ['.png', '.jpg', '.jpeg', '.webp', '.bmp']: | |
try: | |
with open(file_path, "rb") as f: | |
image_bytes = f.read() | |
if not image_bytes: | |
return f"Error: Uploaded image file '{file_name}' is empty.", "", {} | |
base64_encoded_image = encode_image_bytes(image_bytes) | |
# Determine MIME type | |
mime_type, _ = mimetypes.guess_type(file_path) | |
if not mime_type or not mime_type.startswith('image'): | |
logger.warning(f"Could not determine MIME type for {file_name} using extension. Defaulting to image/jpeg.") | |
mime_type = 'image/jpeg' # Fallback | |
data_uri = f"data:{mime_type};base64,{base64_encoded_image}" | |
logger.info(f"Sending image {file_name} ({mime_type}) as data URI to Mistral OCR (model: mistral-ocr-latest)...") | |
ocr_response = client.ocr.process( | |
model="mistral-ocr-latest", | |
document={ | |
"type": "image_url", | |
"image_url": data_uri | |
}, | |
include_image_base64=True | |
) | |
logger.info(f"OCR processing complete for image {file_name}.") | |
except Exception as img_ocr_err: | |
logger.error(f"Error during image OCR for {file_name}: {img_ocr_err}", exc_info=True) | |
return f"Error during OCR for image '{file_name}': {img_ocr_err}", "", {} | |
else: | |
unsupported_msg = f"Unsupported file type: '{file_name}'. Please provide a PDF or an image (png, jpg, jpeg, webp, bmp)." | |
logger.warning(unsupported_msg) | |
return unsupported_msg, "", {} | |
# Process the OCR response (common path for PDF/Image) | |
if ocr_response: | |
logger.info("Processing OCR response to combine markdown and images...") | |
processed_md, raw_md, img_map = get_combined_markdown(ocr_response) | |
logger.info("Markdown and image data extraction complete.") | |
return processed_md, raw_md, img_map | |
else: | |
# This case might occur if OCR processing itself failed silently or returned None | |
logger.error(f"OCR processing for '{file_name}' did not return a valid response.") | |
return f"Error: OCR processing failed for '{file_name}'. No response received.", "", {} | |
except FileNotFoundError: | |
logger.error(f"Temporary file not found: {file_path}", exc_info=True) | |
return f"Error: Could not read the uploaded file '{file_name}'. Ensure it uploaded correctly.", "", {} | |
except Exception as e: | |
logger.error(f"Unexpected error during OCR processing file {file_name}: {e}", exc_info=True) | |
# Provide more context in the error message returned to the user | |
return f"Error during OCR processing for '{file_name}': {str(e)}", "", {} | |
def chunk_markdown( | |
markdown_text_with_images: str, | |
chunk_size: int = 1000, | |
chunk_overlap: int = 200, | |
strip_headers: bool = True | |
) -> List[Document]: | |
""" | |
Chunks markdown text, preserving headers in metadata and adding embedded image info. | |
Args: | |
markdown_text_with_images: The markdown string containing base64 data URIs for images. | |
chunk_size: The target size for chunks (characters). 0 to disable recursive splitting. | |
chunk_overlap: The overlap between consecutive chunks (characters). | |
strip_headers: Whether to remove header syntax (e.g., '# ') from the chunk content. | |
Returns: | |
A list of Langchain Document objects representing the chunks. Returns empty list if input is empty. | |
""" | |
if not markdown_text_with_images or not markdown_text_with_images.strip(): | |
logger.warning("chunk_markdown received empty or whitespace-only input string.") | |
return [] | |
try: | |
headers_to_split_on = [ | |
("#", "Header 1"), | |
("##", "Header 2"), | |
("###", "Header 3"), | |
("####", "Header 4"), | |
("#####", "Header 5"), # Added more levels | |
("######", "Header 6"), | |
] | |
# Initialize MarkdownHeaderTextSplitter | |
markdown_splitter = MarkdownHeaderTextSplitter( | |
headers_to_split_on=headers_to_split_on, | |
strip_headers=strip_headers, | |
return_each_line=False # Process blocks | |
) | |
logger.info("Splitting markdown by headers...") | |
header_chunks = markdown_splitter.split_text(markdown_text_with_images) | |
logger.info(f"Split into {len(header_chunks)} chunks based on headers.") | |
if not header_chunks: | |
logger.warning("MarkdownHeaderTextSplitter returned zero chunks.") | |
# Maybe the input had no headers? Treat the whole text as one chunk? | |
# Or just return empty? Let's return empty for now, as header splitting is intended. | |
# Alternative: create a single Document if header_chunks is empty but input wasn't. | |
# doc = Document(page_content=markdown_text_with_images, metadata={}) | |
# header_chunks = [doc] | |
# logger.info("No headers found, treating input as a single chunk.") | |
# For now, stick to returning empty list if no header chunks are made. | |
return [] | |
final_chunks = [] | |
# If chunk_size is specified and > 0, further split large chunks | |
if chunk_size > 0: | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
length_function=len, | |
# More robust separators | |
separators=["\n\n", "\n", "(?<=\. )", "(?<=\? )", "(?<=! )", ", ", "; ", " ", ""], | |
keep_separator=False, | |
add_start_index=True # Add start index relative to the parent (header) chunk | |
) | |
logger.info(f"Applying recursive character splitting (size={chunk_size}, overlap={chunk_overlap})...") | |
processed_chunks_count = 0 | |
for i, header_chunk in enumerate(header_chunks): | |
# Check if page_content exists and is longer than chunk_size | |
if header_chunk.page_content and len(header_chunk.page_content) > chunk_size: | |
logger.debug(f"Header chunk {i} (length {len(header_chunk.page_content)}) needs recursive splitting.") | |
try: | |
# split_documents preserves metadata from the parent chunk | |
sub_chunks = text_splitter.split_documents([header_chunk]) | |
final_chunks.extend(sub_chunks) | |
processed_chunks_count += len(sub_chunks) | |
logger.debug(f" -> Split into {len(sub_chunks)} sub-chunks.") | |
except Exception as split_err: | |
logger.error(f"Error splitting header chunk {i}: {split_err}", exc_info=True) | |
# Option: Add the original large chunk instead? Or skip? Let's skip broken ones. | |
logger.warning(f"Skipping header chunk {i} due to splitting error.") | |
continue | |
else: | |
# If the chunk is already small enough or empty, just add it | |
if header_chunk.page_content: # Add only if it has content | |
final_chunks.append(header_chunk) | |
processed_chunks_count += 1 | |
logger.debug(f"Header chunk {i} (length {len(header_chunk.page_content)}) kept as is.") | |
else: | |
logger.debug(f"Header chunk {i} was empty, skipping.") | |
logger.info(f"Recursive character splitting finished. Processed {processed_chunks_count} chunks.") | |
else: | |
# If chunk_size is 0, use only non-empty header chunks | |
logger.info("chunk_size is 0, using only non-empty header-based chunks.") | |
final_chunks = [chunk for chunk in header_chunks if chunk.page_content] | |
# Post-process final chunks: Extract embedded image data URIs and add to metadata | |
logger.info("Extracting embedded image data URIs for final chunk metadata...") | |
for chunk in final_chunks: | |
images_in_chunk = [] | |
if chunk.page_content: | |
try: | |
# Regex to find all base64 data URIs in the chunk content | |
# Non-greedy alt text `.*?`, robust base64 chars `[A-Za-z0-9+/=]+` | |
# Ensure the closing parenthesis `\)` is matched correctly | |
pattern = r"!\[.*?\]\((data:image/[a-zA-Z+]+;base64,[A-Za-z0-9+/=]+)\)" | |
images_in_chunk = re.findall(pattern, chunk.page_content) | |
except Exception as regex_err: | |
logger.error(f"Regex error extracting images from chunk: {regex_err}", exc_info=True) | |
# Leave images list empty for this chunk | |
# Ensure metadata exists and add images list (can be empty) | |
if not hasattr(chunk, 'metadata'): | |
chunk.metadata = {} | |
chunk.metadata["images_base64"] = images_in_chunk # Use a more specific key name | |
logger.info(f"Created {len(final_chunks)} final chunks after processing and filtering.") | |
return final_chunks | |
except Exception as e: | |
logger.error(f"Error during markdown chunking process: {str(e)}", exc_info=True) | |
raise # Re-raise to be caught by the main processing function | |
# --- Main Processing Function --- | |
def process_file_and_save( | |
file_obj: Any, # Gradio File object | |
chunk_size: int, | |
chunk_overlap: int, | |
strip_headers: bool, | |
hf_token: str, | |
repo_name: str | |
) -> str: | |
""" | |
Orchestrates the OCR, chunking, and saving process to Hugging Face Hub. | |
Args: | |
file_obj: The uploaded file object from Gradio. | |
chunk_size: Max chunk size for text splitting (chars). 0 disables recursive splitting. | |
chunk_overlap: Overlap for text splitting (chars). | |
strip_headers: Whether to remove markdown headers from chunk content. | |
hf_token: Hugging Face API token (write permission). | |
repo_name: Name for the Hugging Face dataset repository (e.g., 'username/my-ocr-dataset'). | |
Returns: | |
A string indicating success or failure, suitable for display in Gradio. | |
""" | |
# --- Input Validation --- | |
if not file_obj: | |
return "Error: No file uploaded. Please upload a PDF or image file." | |
if not repo_name or '/' not in repo_name: | |
return "Error: Invalid Hugging Face Repository Name. Use format 'username/dataset-name'." | |
# Validate chunking parameters | |
if chunk_size < 0: | |
logger.warning("Chunk size cannot be negative. Setting to 0 (header splits only).") | |
chunk_size = 0 | |
if chunk_overlap < 0: | |
logger.warning("Chunk overlap cannot be negative. Setting to 0.") | |
chunk_overlap = 0 | |
if chunk_size > 0 and chunk_overlap >= chunk_size: | |
logger.warning(f"Chunk overlap ({chunk_overlap}) >= chunk size ({chunk_size}). Adjusting overlap to {min(200, chunk_size // 2)}.") | |
chunk_overlap = min(200, chunk_size // 2) # Set a reasonable overlap | |
# Handle Hugging Face Token | |
if not hf_token: | |
logger.info("No explicit HF token provided. Trying to use token from local Hugging Face login.") | |
try: | |
hf_token = huggingface_hub.get_token() | |
if not hf_token: | |
return "Error: Hugging Face Token is required. Please provide a token or log in using `huggingface-cli login`." | |
logger.info("Using HF token from local login for dataset operations.") | |
except Exception as e: | |
logger.error(f"Error checking HF login for token: {e}", exc_info=True) | |
return f"Error: Hugging Face Token is required. Could not verify HF login: {e}" | |
try: | |
source_filename = getattr(file_obj, 'orig_name', os.path.basename(file_obj.name)) | |
logger.info(f"--- Starting processing for file: {source_filename} ---") | |
# --- Step 1: Perform OCR --- | |
logger.info("Step 1: Performing OCR...") | |
processed_markdown, _, _ = perform_ocr_file(file_obj) # raw_markdown and image_map not directly used later | |
# Check if OCR returned an error message or was empty/invalid | |
if not processed_markdown or isinstance(processed_markdown, str) and ( | |
processed_markdown.startswith("Error:") or processed_markdown.startswith("Unsupported file type:")): | |
logger.error(f"OCR failed or returned error/unsupported: {processed_markdown}") | |
return processed_markdown # Return the error message directly | |
if not isinstance(processed_markdown, str) or len(processed_markdown.strip()) == 0: | |
logger.error("OCR processing returned empty or invalid markdown content.") | |
return "Error: OCR returned empty or invalid content." | |
logger.info("Step 1: OCR finished successfully.") | |
# --- Step 2: Chunk the markdown --- | |
logger.info("Step 2: Chunking the markdown...") | |
chunks = chunk_markdown(processed_markdown, chunk_size, chunk_overlap, strip_headers) | |
if not chunks: | |
logger.error("Chunking resulted in zero chunks. Check OCR output and chunking parameters.") | |
return "Error: Failed to chunk the document (possibly empty after OCR or no headers found)." | |
logger.info(f"Step 2: Chunking finished, produced {len(chunks)} chunks.") | |
# --- Step 3: Prepare dataset --- | |
logger.info("Step 3: Preparing data for Hugging Face dataset...") | |
data: Dict[str, List[Any]] = { | |
"chunk_id": [], | |
"text": [], # Renamed 'content' to 'text' | |
"metadata": [], | |
"source_filename": [], | |
} | |
for i, chunk in enumerate(chunks): | |
chunk_id = f"{source_filename}_chunk_{i}" | |
data["chunk_id"].append(chunk_id) | |
data["text"].append(chunk.page_content if chunk.page_content else "") # Ensure text is string | |
# Ensure metadata is serializable (dicts, lists, primitives) for HF Datasets | |
serializable_metadata = {} | |
if hasattr(chunk, 'metadata') and chunk.metadata: | |
for k, v in chunk.metadata.items(): | |
if isinstance(v, (str, int, float, bool, list, dict, type(None))): | |
serializable_metadata[k] = v | |
else: | |
# Convert potentially problematic types (like Langchain objects) to string | |
logger.warning(f"Chunk {chunk_id}: Metadata key '{k}' has non-standard type {type(v)}. Converting to string.") | |
try: | |
serializable_metadata[k] = str(v) | |
except Exception as str_err: | |
logger.error(f"Chunk {chunk_id}: Failed to convert metadata key '{k}' to string: {str_err}") | |
serializable_metadata[k] = f"ERROR_CONVERTING_{type(v).__name__}" | |
data["metadata"].append(serializable_metadata) | |
data["source_filename"].append(source_filename) | |
# --- Step 4: Create and push dataset to Hugging Face --- | |
logger.info(f"Step 4: Creating Hugging Face Dataset object for repo '{repo_name}'...") | |
try: | |
# Explicitly define features for robustness, especially if metadata varies | |
# features = datasets.Features({ | |
# "chunk_id": datasets.Value("string"), | |
# "text": datasets.Value("string"), | |
# "metadata": datasets.features.Features({}), # Define known metadata fields if possible, or leave open | |
# "source_filename": datasets.Value("string"), | |
# }) | |
# dataset = Dataset.from_dict(data, features=features) | |
dataset = Dataset.from_dict(data) # Simpler approach, infers features | |
logger.info(f"Dataset object created with {len(chunks)} rows.") | |
except Exception as ds_err: | |
logger.error(f"Failed to create Dataset object: {ds_err}", exc_info=True) | |
return f"Error: Failed to create dataset structure. Check logs. ({ds_err})" | |
logger.info(f"Connecting to Hugging Face Hub API to push to '{repo_name}'...") | |
try: | |
api = HfApi(token=hf_token) # Pass token explicitly | |
# Create repo if it doesn't exist | |
try: | |
api.repo_info(repo_id=repo_name, repo_type="dataset") | |
logger.info(f"Repository '{repo_name}' already exists. Will overwrite content.") | |
except huggingface_hub.utils.RepositoryNotFoundError: | |
logger.info(f"Repository '{repo_name}' does not exist. Creating...") | |
api.create_repo(repo_id=repo_name, repo_type="dataset", private=False) # Default to public | |
logger.info(f"Successfully created repository '{repo_name}'.") | |
# Push the dataset | |
logger.info(f"Pushing dataset to '{repo_name}'...") | |
commit_message = f"Add/update OCR data from file: {source_filename}" | |
# push_to_hub overwrites the dataset by default | |
dataset.push_to_hub(repo_name, commit_message=commit_message) | |
repo_url = f"https://huggingface.co/datasets/{repo_name}" | |
logger.info(f"Dataset successfully pushed to {repo_url}") | |
return f"Success! Dataset with {len(chunks)} chunks saved to Hugging Face: {repo_url}" | |
except huggingface_hub.utils.HfHubHTTPError as hf_http_err: | |
logger.error(f"Hugging Face Hub HTTP Error: {hf_http_err}", exc_info=True) | |
return f"Error: Hugging Face Hub Error pushing to '{repo_name}'. Status: {hf_http_err.response.status_code}. Check token permissions, repo name, and network. Details: {hf_http_err}" | |
except Exception as push_err: | |
logger.error(f"Failed to push dataset to '{repo_name}': {push_err}", exc_info=True) | |
return f"Error: Failed to push dataset to Hugging Face repository '{repo_name}'. ({push_err})" | |
except Exception as e: | |
# Catch any unexpected errors during the overall process | |
logger.error(f"An unexpected error occurred processing '{source_filename}': {str(e)}", exc_info=True) | |
return f"An unexpected error occurred: {str(e)}" | |
finally: | |
logger.info(f"--- Finished processing for file: {source_filename} ---") | |
# --- Gradio Interface --- | |
with gr.Blocks(title="Mistral OCR & Dataset Creator", theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as demo: | |
gr.Markdown("# Mistral OCR, Markdown Chunking, and Hugging Face Dataset Creator") | |
gr.Markdown( | |
""" | |
Upload a PDF or image file (PNG, JPG, WEBP, BMP). The application will: | |
1. Extract text and images using **Mistral OCR**. | |
2. Embed images as base64 data URIs directly within the extracted markdown text. | |
3. Chunk the resulting markdown based on **headers** and optionally **recursively by character count**. | |
4. Store any embedded base64 images found **within each chunk** in the chunk's metadata (`metadata['images_base64']`). | |
5. Create or update a **Hugging Face Dataset** with the processed chunks (`chunk_id`, `text`, `metadata`, `source_filename`). | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File( | |
label="Upload PDF or Image File", | |
file_types=['.pdf', '.png', '.jpg', '.jpeg', '.webp', '.bmp'], | |
type="filepath" # Ensures we get a path usable by `open()` | |
) | |
gr.Markdown("## Chunking Options") | |
chunk_size = gr.Slider( | |
minimum=0, maximum=8000, value=1000, step=100, # Increased max size | |
label="Max Chunk Size (Characters)", | |
info="Approximate target size. Set to 0 to disable recursive splitting (uses only header splits)." | |
) | |
chunk_overlap = gr.Slider( | |
minimum=0, maximum=1000, value=200, step=50, | |
label="Chunk Overlap (Characters)", | |
info="Number of characters to overlap between consecutive chunks (if recursive splitting is enabled)." | |
) | |
strip_headers = gr.Checkbox( | |
label="Strip Markdown Headers (#) from Chunk Content", | |
value=True, | |
info="If checked, removes '#', '##' etc. from the start of the text in each chunk." | |
) | |
gr.Markdown("## Hugging Face Output Options") | |
repo_name = gr.Textbox( | |
label="Target Hugging Face Dataset Repository", | |
placeholder="your-username/your-dataset-name", | |
info="The dataset will be pushed here (e.g., 'my-org/my-ocr-data'). Will be created if it doesn't exist." | |
) | |
hf_token = gr.Textbox( | |
label="Hugging Face Token (write permission)", | |
type="password", | |
placeholder="hf_...", | |
info="Required to create/push the dataset. If blank, will try using token from local `huggingface-cli login`.", | |
# value=os.environ.get("HF_TOKEN", "") # Optionally pre-fill from env var if desired | |
) | |
submit_btn = gr.Button("Process File and Save to Hugging Face", variant="primary") | |
with gr.Column(scale=1): | |
output = gr.Textbox( | |
label="Processing Log / Result Status", | |
lines=20, | |
interactive=False, | |
placeholder="Processing steps and final result will appear here..." | |
) | |
submit_btn.click( | |
fn=process_file_and_save, | |
inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name], | |
outputs=output | |
) | |
gr.Examples( | |
examples=[ | |
[None, 1000, 200, True, "", "hf-username/my-first-ocr-dataset"], | |
[None, 2000, 400, True, "", "hf-username/large-chunk-ocr-data"], | |
[None, 0, 0, False, "", "hf-username/header-only-ocr-data"], # Example for header-only splitting | |
], | |
inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name], | |
outputs=output, | |
fn=process_file_and_save, # Make examples clickable | |
cache_examples=False # Avoid caching as it involves API calls and file processing | |
) | |
gr.Markdown("--- \n *Requires `MISTRAL_API_KEY` environment variable or being logged in via `huggingface-cli login`.*") | |
# --- Launch the Gradio App --- | |
if __name__ == "__main__": | |
# Check if client initialization failed earlier | |
if not client and api_key: # Check if key was present but init failed | |
print("\nCRITICAL: Mistral client failed to initialize. The application cannot perform OCR.") | |
print("Please check your MISTRAL_API_KEY and network connection.\n") | |
# Optionally exit, or let Gradio launch with limited functionality | |
# exit(1) | |
elif not client and not api_key: | |
print("\nWARNING: Mistral client not initialized because no API key was found.") | |
print("OCR functionality will fail. Please set MISTRAL_API_KEY or log in via `huggingface-cli login`.\n") | |
# share=True creates a public link (useful for Colab/Spaces) | |
# debug=True provides detailed errors in the console during development | |
demo.launch(share=os.getenv('GRADIO_SHARE', 'False').lower() == 'true', debug=True,) |