PDF2Dataset / app.py
Svngoku's picture
Update app.py
f13386c verified
raw
history blame
33.7 kB
import gradio as gr
from langchain_text_splitters import MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter
from langchain.schema import Document
from typing import List, Dict, Any, Tuple
import logging
import re
import base64
import mimetypes # Added
from datasets import Dataset
from huggingface_hub import HfApi
import huggingface_hub # Added for token checking and errors
import os
from mistralai import Mistral # Assuming this is the correct import for the client
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Mistral OCR Setup ---
api_key = os.environ.get("MISTRAL_API_KEY")
if not api_key:
logger.warning("MISTRAL_API_KEY environment variable not set. Attempting to use Hugging Face token.")
try:
api_key = huggingface_hub.get_token()
if not api_key:
# If running locally, this might still fail if not logged in.
logger.warning("Could not retrieve token from Hugging Face login.")
# Error will be raised later if client init fails or during HF push if token still missing
else:
logger.info("Using Hugging Face token as MISTRAL_API_KEY.")
except Exception as e:
logger.warning(f"Could not check Hugging Face login for token: {e}")
# Proceed without API key, client initialization might fail
# Initialize Mistral Client
client = None
if api_key:
try:
client = Mistral(api_key=api_key)
logger.info("Mistral client initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize Mistral client: {e}", exc_info=True)
# Raise a clearer error for Gradio startup if client fails
raise RuntimeError(f"Failed to initialize Mistral client. Check API key and mistralai installation. Error: {e}")
else:
# This path might be hit if no env var and no HF token found
logger.error("Mistral API key is not available. OCR functionality will fail.")
# We could raise an error here, or let it fail when client methods are called.
# Let's allow Gradio to load but OCR will fail clearly later.
# --- Helper Functions ---
def encode_image_bytes(image_bytes: bytes) -> str:
"""Encodes image bytes to a base64 string."""
return base64.b64encode(image_bytes).decode('utf-8')
def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]:
"""
Combines markdown from OCR pages, replacing image IDs with base64 data URIs.
Args:
ocr_response: The response object from the Mistral OCR API.
Returns:
A tuple containing:
- combined_markdown_with_images: Markdown string with image references replaced by base64 data URIs.
- combined_raw_markdown: Original markdown string without image replacement.
- image_data_map: A dictionary mapping image IDs to their base64 data URIs.
Raises ValueError on unexpected response structure.
"""
processed_markdowns = []
raw_markdowns = []
image_data_map = {} # Collect image_id -> base64_data_uri
if not hasattr(ocr_response, 'pages') or not ocr_response.pages:
logger.warning("OCR response has no 'pages' attribute or pages list is empty.")
return "", "", {}
try:
# Collect all image data first (assuming image_base64 includes data URI prefix from Mistral)
for page_idx, page in enumerate(ocr_response.pages):
if hasattr(page, 'images') and page.images:
for img in page.images:
if hasattr(img, 'id') and hasattr(img, 'image_base64') and img.image_base64:
image_data_map[img.id] = img.image_base64 # Assuming this is the full data URI
else:
logger.warning(f"Page {page_idx}: Image object lacks 'id' or valid 'image_base64'. Image: {img}")
# else: # Don't warn if a page simply has no images
# logger.debug(f"Page {page_idx} has no 'images' attribute or no images found.")
# Process markdown for each page
for page_idx, page in enumerate(ocr_response.pages):
if not hasattr(page, 'markdown'):
logger.warning(f"Page {page_idx} in OCR response lacks 'markdown' attribute. Skipping.")
continue # Skip page if no markdown
current_raw_markdown = page.markdown if page.markdown else ""
raw_markdowns.append(current_raw_markdown)
current_processed_markdown = current_raw_markdown
# Find all image references like ![alt_text](image_id)
# Regex to find the image ID (content within parentheses)
img_refs = re.findall(r"!\[.*?\]\((.*?)\)", current_processed_markdown)
for img_id in img_refs:
if img_id in image_data_map:
base64_data_uri = image_data_map[img_id]
# Escape potential regex special characters in img_id before using in replace
escaped_img_id = re.escape(img_id)
# Replace ![...](image_id) with ![...](data:...)
# Use a specific regex for replacement: find the exact pattern ![...](img_id)
pattern = r"(!\[.*?\]\()" + escaped_img_id + r"(\))"
# Check if replacement target exists before replacing
if re.search(pattern, current_processed_markdown):
current_processed_markdown = re.sub(
pattern,
r"\1" + base64_data_uri + r"\2",
current_processed_markdown
)
else:
# This case shouldn't happen often if img_id came from findall on the same string
logger.warning(f"Page {page_idx}: Found img_id '{img_id}' but couldn't find exact pattern '{pattern}' for replacement.")
else:
# Only log warning if the ID looks like an expected image ID pattern (e.g., 'image_X')
# Avoid warning for regular URLs that might be in the markdown
if not img_id.startswith(('http:', 'https:', 'data:')): # Check if it's not already a URL
logger.warning(f"Page {page_idx}: Image ID '{img_id}' found in markdown but not in collected image data.")
processed_markdowns.append(current_processed_markdown)
return "\n\n".join(processed_markdowns), "\n\n".join(raw_markdowns), image_data_map
except AttributeError as ae:
logger.error(f"Attribute error accessing OCR response structure: {ae}", exc_info=True)
raise ValueError(f"Unexpected OCR response structure. Check Mistral API changes. Error: {ae}")
except Exception as e:
logger.error(f"Error processing OCR response markdown: {e}", exc_info=True)
raise
def perform_ocr_file(file_obj: Any) -> Tuple[str, str, Dict[str, str]]:
"""
Performs OCR on an uploaded file (PDF or image) using the Mistral API.
Args:
file_obj: The file object from Gradio's gr.File component.
Returns:
A tuple containing:
- processed_markdown: Markdown string with base64 images, or error message.
- raw_markdown: Original markdown string.
- image_data_map: Dictionary mapping image IDs to base64 data URIs.
"""
if not client:
return "Error: Mistral client not initialized. Check API key setup.", "", {}
if not file_obj:
# This check might be redundant if called from process_file_and_save, but good practice
return "Error: No file provided to OCR function.", "", {}
try:
file_path = file_obj.name # Get the temporary file path from Gradio
# Use the original filename if available (Gradio>=4), else use the temp path's basename
file_name = getattr(file_obj, 'orig_name', os.path.basename(file_path))
logger.info(f"Performing OCR on file: {file_name} (temp path: {file_path})")
# Determine file type from extension
file_ext = os.path.splitext(file_name)[1].lower()
ocr_response = None
uploaded_file_id = None
if file_ext == '.pdf':
try:
with open(file_path, "rb") as f:
logger.info(f"Uploading PDF {file_name} to Mistral...")
# Pass as tuple (filename, file-like object)
uploaded_pdf = client.files.upload(
file=(file_name, f),
purpose="ocr"
)
uploaded_file_id = uploaded_pdf.id
logger.info(f"PDF uploaded successfully. File ID: {uploaded_file_id}")
logger.info(f"Getting signed URL for file ID: {uploaded_file_id}")
signed_url_response = client.files.get_signed_url(file_id=uploaded_file_id)
logger.info(f"Got signed URL: {signed_url_response.url[:50]}...")
logger.info("Sending PDF URL to Mistral OCR (model: mistral-ocr-latest)...")
ocr_response = client.ocr.process(
model="mistral-ocr-latest",
document={
"type": "document_url",
"document_url": signed_url_response.url,
},
include_image_base64=True
)
logger.info("OCR processing complete for PDF.")
finally:
# Ensure cleanup even if OCR fails after upload
if uploaded_file_id:
try:
logger.info(f"Deleting temporary Mistral file: {uploaded_file_id}")
client.files.delete(file_id=uploaded_file_id)
except Exception as delete_err:
logger.warning(f"Failed to delete temporary Mistral file {uploaded_file_id}: {delete_err}")
elif file_ext in ['.png', '.jpg', '.jpeg', '.webp', '.bmp']:
try:
with open(file_path, "rb") as f:
image_bytes = f.read()
if not image_bytes:
return f"Error: Uploaded image file '{file_name}' is empty.", "", {}
base64_encoded_image = encode_image_bytes(image_bytes)
# Determine MIME type
mime_type, _ = mimetypes.guess_type(file_path)
if not mime_type or not mime_type.startswith('image'):
logger.warning(f"Could not determine MIME type for {file_name} using extension. Defaulting to image/jpeg.")
mime_type = 'image/jpeg' # Fallback
data_uri = f"data:{mime_type};base64,{base64_encoded_image}"
logger.info(f"Sending image {file_name} ({mime_type}) as data URI to Mistral OCR (model: mistral-ocr-latest)...")
ocr_response = client.ocr.process(
model="mistral-ocr-latest",
document={
"type": "image_url",
"image_url": data_uri
},
include_image_base64=True
)
logger.info(f"OCR processing complete for image {file_name}.")
except Exception as img_ocr_err:
logger.error(f"Error during image OCR for {file_name}: {img_ocr_err}", exc_info=True)
return f"Error during OCR for image '{file_name}': {img_ocr_err}", "", {}
else:
unsupported_msg = f"Unsupported file type: '{file_name}'. Please provide a PDF or an image (png, jpg, jpeg, webp, bmp)."
logger.warning(unsupported_msg)
return unsupported_msg, "", {}
# Process the OCR response (common path for PDF/Image)
if ocr_response:
logger.info("Processing OCR response to combine markdown and images...")
processed_md, raw_md, img_map = get_combined_markdown(ocr_response)
logger.info("Markdown and image data extraction complete.")
return processed_md, raw_md, img_map
else:
# This case might occur if OCR processing itself failed silently or returned None
logger.error(f"OCR processing for '{file_name}' did not return a valid response.")
return f"Error: OCR processing failed for '{file_name}'. No response received.", "", {}
except FileNotFoundError:
logger.error(f"Temporary file not found: {file_path}", exc_info=True)
return f"Error: Could not read the uploaded file '{file_name}'. Ensure it uploaded correctly.", "", {}
except Exception as e:
logger.error(f"Unexpected error during OCR processing file {file_name}: {e}", exc_info=True)
# Provide more context in the error message returned to the user
return f"Error during OCR processing for '{file_name}': {str(e)}", "", {}
def chunk_markdown(
markdown_text_with_images: str,
chunk_size: int = 1000,
chunk_overlap: int = 200,
strip_headers: bool = True
) -> List[Document]:
"""
Chunks markdown text, preserving headers in metadata and adding embedded image info.
Args:
markdown_text_with_images: The markdown string containing base64 data URIs for images.
chunk_size: The target size for chunks (characters). 0 to disable recursive splitting.
chunk_overlap: The overlap between consecutive chunks (characters).
strip_headers: Whether to remove header syntax (e.g., '# ') from the chunk content.
Returns:
A list of Langchain Document objects representing the chunks. Returns empty list if input is empty.
"""
if not markdown_text_with_images or not markdown_text_with_images.strip():
logger.warning("chunk_markdown received empty or whitespace-only input string.")
return []
try:
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
("###", "Header 3"),
("####", "Header 4"),
("#####", "Header 5"), # Added more levels
("######", "Header 6"),
]
# Initialize MarkdownHeaderTextSplitter
markdown_splitter = MarkdownHeaderTextSplitter(
headers_to_split_on=headers_to_split_on,
strip_headers=strip_headers,
return_each_line=False # Process blocks
)
logger.info("Splitting markdown by headers...")
header_chunks = markdown_splitter.split_text(markdown_text_with_images)
logger.info(f"Split into {len(header_chunks)} chunks based on headers.")
if not header_chunks:
logger.warning("MarkdownHeaderTextSplitter returned zero chunks.")
# Maybe the input had no headers? Treat the whole text as one chunk?
# Or just return empty? Let's return empty for now, as header splitting is intended.
# Alternative: create a single Document if header_chunks is empty but input wasn't.
# doc = Document(page_content=markdown_text_with_images, metadata={})
# header_chunks = [doc]
# logger.info("No headers found, treating input as a single chunk.")
# For now, stick to returning empty list if no header chunks are made.
return []
final_chunks = []
# If chunk_size is specified and > 0, further split large chunks
if chunk_size > 0:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
# More robust separators
separators=["\n\n", "\n", "(?<=\. )", "(?<=\? )", "(?<=! )", ", ", "; ", " ", ""],
keep_separator=False,
add_start_index=True # Add start index relative to the parent (header) chunk
)
logger.info(f"Applying recursive character splitting (size={chunk_size}, overlap={chunk_overlap})...")
processed_chunks_count = 0
for i, header_chunk in enumerate(header_chunks):
# Check if page_content exists and is longer than chunk_size
if header_chunk.page_content and len(header_chunk.page_content) > chunk_size:
logger.debug(f"Header chunk {i} (length {len(header_chunk.page_content)}) needs recursive splitting.")
try:
# split_documents preserves metadata from the parent chunk
sub_chunks = text_splitter.split_documents([header_chunk])
final_chunks.extend(sub_chunks)
processed_chunks_count += len(sub_chunks)
logger.debug(f" -> Split into {len(sub_chunks)} sub-chunks.")
except Exception as split_err:
logger.error(f"Error splitting header chunk {i}: {split_err}", exc_info=True)
# Option: Add the original large chunk instead? Or skip? Let's skip broken ones.
logger.warning(f"Skipping header chunk {i} due to splitting error.")
continue
else:
# If the chunk is already small enough or empty, just add it
if header_chunk.page_content: # Add only if it has content
final_chunks.append(header_chunk)
processed_chunks_count += 1
logger.debug(f"Header chunk {i} (length {len(header_chunk.page_content)}) kept as is.")
else:
logger.debug(f"Header chunk {i} was empty, skipping.")
logger.info(f"Recursive character splitting finished. Processed {processed_chunks_count} chunks.")
else:
# If chunk_size is 0, use only non-empty header chunks
logger.info("chunk_size is 0, using only non-empty header-based chunks.")
final_chunks = [chunk for chunk in header_chunks if chunk.page_content]
# Post-process final chunks: Extract embedded image data URIs and add to metadata
logger.info("Extracting embedded image data URIs for final chunk metadata...")
for chunk in final_chunks:
images_in_chunk = []
if chunk.page_content:
try:
# Regex to find all base64 data URIs in the chunk content
# Non-greedy alt text `.*?`, robust base64 chars `[A-Za-z0-9+/=]+`
# Ensure the closing parenthesis `\)` is matched correctly
pattern = r"!\[.*?\]\((data:image/[a-zA-Z+]+;base64,[A-Za-z0-9+/=]+)\)"
images_in_chunk = re.findall(pattern, chunk.page_content)
except Exception as regex_err:
logger.error(f"Regex error extracting images from chunk: {regex_err}", exc_info=True)
# Leave images list empty for this chunk
# Ensure metadata exists and add images list (can be empty)
if not hasattr(chunk, 'metadata'):
chunk.metadata = {}
chunk.metadata["images_base64"] = images_in_chunk # Use a more specific key name
logger.info(f"Created {len(final_chunks)} final chunks after processing and filtering.")
return final_chunks
except Exception as e:
logger.error(f"Error during markdown chunking process: {str(e)}", exc_info=True)
raise # Re-raise to be caught by the main processing function
# --- Main Processing Function ---
def process_file_and_save(
file_obj: Any, # Gradio File object
chunk_size: int,
chunk_overlap: int,
strip_headers: bool,
hf_token: str,
repo_name: str
) -> str:
"""
Orchestrates the OCR, chunking, and saving process to Hugging Face Hub.
Args:
file_obj: The uploaded file object from Gradio.
chunk_size: Max chunk size for text splitting (chars). 0 disables recursive splitting.
chunk_overlap: Overlap for text splitting (chars).
strip_headers: Whether to remove markdown headers from chunk content.
hf_token: Hugging Face API token (write permission).
repo_name: Name for the Hugging Face dataset repository (e.g., 'username/my-ocr-dataset').
Returns:
A string indicating success or failure, suitable for display in Gradio.
"""
# --- Input Validation ---
if not file_obj:
return "Error: No file uploaded. Please upload a PDF or image file."
if not repo_name or '/' not in repo_name:
return "Error: Invalid Hugging Face Repository Name. Use format 'username/dataset-name'."
# Validate chunking parameters
if chunk_size < 0:
logger.warning("Chunk size cannot be negative. Setting to 0 (header splits only).")
chunk_size = 0
if chunk_overlap < 0:
logger.warning("Chunk overlap cannot be negative. Setting to 0.")
chunk_overlap = 0
if chunk_size > 0 and chunk_overlap >= chunk_size:
logger.warning(f"Chunk overlap ({chunk_overlap}) >= chunk size ({chunk_size}). Adjusting overlap to {min(200, chunk_size // 2)}.")
chunk_overlap = min(200, chunk_size // 2) # Set a reasonable overlap
# Handle Hugging Face Token
if not hf_token:
logger.info("No explicit HF token provided. Trying to use token from local Hugging Face login.")
try:
hf_token = huggingface_hub.get_token()
if not hf_token:
return "Error: Hugging Face Token is required. Please provide a token or log in using `huggingface-cli login`."
logger.info("Using HF token from local login for dataset operations.")
except Exception as e:
logger.error(f"Error checking HF login for token: {e}", exc_info=True)
return f"Error: Hugging Face Token is required. Could not verify HF login: {e}"
try:
source_filename = getattr(file_obj, 'orig_name', os.path.basename(file_obj.name))
logger.info(f"--- Starting processing for file: {source_filename} ---")
# --- Step 1: Perform OCR ---
logger.info("Step 1: Performing OCR...")
processed_markdown, _, _ = perform_ocr_file(file_obj) # raw_markdown and image_map not directly used later
# Check if OCR returned an error message or was empty/invalid
if not processed_markdown or isinstance(processed_markdown, str) and (
processed_markdown.startswith("Error:") or processed_markdown.startswith("Unsupported file type:")):
logger.error(f"OCR failed or returned error/unsupported: {processed_markdown}")
return processed_markdown # Return the error message directly
if not isinstance(processed_markdown, str) or len(processed_markdown.strip()) == 0:
logger.error("OCR processing returned empty or invalid markdown content.")
return "Error: OCR returned empty or invalid content."
logger.info("Step 1: OCR finished successfully.")
# --- Step 2: Chunk the markdown ---
logger.info("Step 2: Chunking the markdown...")
chunks = chunk_markdown(processed_markdown, chunk_size, chunk_overlap, strip_headers)
if not chunks:
logger.error("Chunking resulted in zero chunks. Check OCR output and chunking parameters.")
return "Error: Failed to chunk the document (possibly empty after OCR or no headers found)."
logger.info(f"Step 2: Chunking finished, produced {len(chunks)} chunks.")
# --- Step 3: Prepare dataset ---
logger.info("Step 3: Preparing data for Hugging Face dataset...")
data: Dict[str, List[Any]] = {
"chunk_id": [],
"text": [], # Renamed 'content' to 'text'
"metadata": [],
"source_filename": [],
}
for i, chunk in enumerate(chunks):
chunk_id = f"{source_filename}_chunk_{i}"
data["chunk_id"].append(chunk_id)
data["text"].append(chunk.page_content if chunk.page_content else "") # Ensure text is string
# Ensure metadata is serializable (dicts, lists, primitives) for HF Datasets
serializable_metadata = {}
if hasattr(chunk, 'metadata') and chunk.metadata:
for k, v in chunk.metadata.items():
if isinstance(v, (str, int, float, bool, list, dict, type(None))):
serializable_metadata[k] = v
else:
# Convert potentially problematic types (like Langchain objects) to string
logger.warning(f"Chunk {chunk_id}: Metadata key '{k}' has non-standard type {type(v)}. Converting to string.")
try:
serializable_metadata[k] = str(v)
except Exception as str_err:
logger.error(f"Chunk {chunk_id}: Failed to convert metadata key '{k}' to string: {str_err}")
serializable_metadata[k] = f"ERROR_CONVERTING_{type(v).__name__}"
data["metadata"].append(serializable_metadata)
data["source_filename"].append(source_filename)
# --- Step 4: Create and push dataset to Hugging Face ---
logger.info(f"Step 4: Creating Hugging Face Dataset object for repo '{repo_name}'...")
try:
# Explicitly define features for robustness, especially if metadata varies
# features = datasets.Features({
# "chunk_id": datasets.Value("string"),
# "text": datasets.Value("string"),
# "metadata": datasets.features.Features({}), # Define known metadata fields if possible, or leave open
# "source_filename": datasets.Value("string"),
# })
# dataset = Dataset.from_dict(data, features=features)
dataset = Dataset.from_dict(data) # Simpler approach, infers features
logger.info(f"Dataset object created with {len(chunks)} rows.")
except Exception as ds_err:
logger.error(f"Failed to create Dataset object: {ds_err}", exc_info=True)
return f"Error: Failed to create dataset structure. Check logs. ({ds_err})"
logger.info(f"Connecting to Hugging Face Hub API to push to '{repo_name}'...")
try:
api = HfApi(token=hf_token) # Pass token explicitly
# Create repo if it doesn't exist
try:
api.repo_info(repo_id=repo_name, repo_type="dataset")
logger.info(f"Repository '{repo_name}' already exists. Will overwrite content.")
except huggingface_hub.utils.RepositoryNotFoundError:
logger.info(f"Repository '{repo_name}' does not exist. Creating...")
api.create_repo(repo_id=repo_name, repo_type="dataset", private=False) # Default to public
logger.info(f"Successfully created repository '{repo_name}'.")
# Push the dataset
logger.info(f"Pushing dataset to '{repo_name}'...")
commit_message = f"Add/update OCR data from file: {source_filename}"
# push_to_hub overwrites the dataset by default
dataset.push_to_hub(repo_name, commit_message=commit_message)
repo_url = f"https://huggingface.co/datasets/{repo_name}"
logger.info(f"Dataset successfully pushed to {repo_url}")
return f"Success! Dataset with {len(chunks)} chunks saved to Hugging Face: {repo_url}"
except huggingface_hub.utils.HfHubHTTPError as hf_http_err:
logger.error(f"Hugging Face Hub HTTP Error: {hf_http_err}", exc_info=True)
return f"Error: Hugging Face Hub Error pushing to '{repo_name}'. Status: {hf_http_err.response.status_code}. Check token permissions, repo name, and network. Details: {hf_http_err}"
except Exception as push_err:
logger.error(f"Failed to push dataset to '{repo_name}': {push_err}", exc_info=True)
return f"Error: Failed to push dataset to Hugging Face repository '{repo_name}'. ({push_err})"
except Exception as e:
# Catch any unexpected errors during the overall process
logger.error(f"An unexpected error occurred processing '{source_filename}': {str(e)}", exc_info=True)
return f"An unexpected error occurred: {str(e)}"
finally:
logger.info(f"--- Finished processing for file: {source_filename} ---")
# --- Gradio Interface ---
with gr.Blocks(title="Mistral OCR & Dataset Creator", theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as demo:
gr.Markdown("# Mistral OCR, Markdown Chunking, and Hugging Face Dataset Creator")
gr.Markdown(
"""
Upload a PDF or image file (PNG, JPG, WEBP, BMP). The application will:
1. Extract text and images using **Mistral OCR**.
2. Embed images as base64 data URIs directly within the extracted markdown text.
3. Chunk the resulting markdown based on **headers** and optionally **recursively by character count**.
4. Store any embedded base64 images found **within each chunk** in the chunk's metadata (`metadata['images_base64']`).
5. Create or update a **Hugging Face Dataset** with the processed chunks (`chunk_id`, `text`, `metadata`, `source_filename`).
"""
)
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload PDF or Image File",
file_types=['.pdf', '.png', '.jpg', '.jpeg', '.webp', '.bmp'],
type="filepath" # Ensures we get a path usable by `open()`
)
gr.Markdown("## Chunking Options")
chunk_size = gr.Slider(
minimum=0, maximum=8000, value=1000, step=100, # Increased max size
label="Max Chunk Size (Characters)",
info="Approximate target size. Set to 0 to disable recursive splitting (uses only header splits)."
)
chunk_overlap = gr.Slider(
minimum=0, maximum=1000, value=200, step=50,
label="Chunk Overlap (Characters)",
info="Number of characters to overlap between consecutive chunks (if recursive splitting is enabled)."
)
strip_headers = gr.Checkbox(
label="Strip Markdown Headers (#) from Chunk Content",
value=True,
info="If checked, removes '#', '##' etc. from the start of the text in each chunk."
)
gr.Markdown("## Hugging Face Output Options")
repo_name = gr.Textbox(
label="Target Hugging Face Dataset Repository",
placeholder="your-username/your-dataset-name",
info="The dataset will be pushed here (e.g., 'my-org/my-ocr-data'). Will be created if it doesn't exist."
)
hf_token = gr.Textbox(
label="Hugging Face Token (write permission)",
type="password",
placeholder="hf_...",
info="Required to create/push the dataset. If blank, will try using token from local `huggingface-cli login`.",
# value=os.environ.get("HF_TOKEN", "") # Optionally pre-fill from env var if desired
)
submit_btn = gr.Button("Process File and Save to Hugging Face", variant="primary")
with gr.Column(scale=1):
output = gr.Textbox(
label="Processing Log / Result Status",
lines=20,
interactive=False,
placeholder="Processing steps and final result will appear here..."
)
submit_btn.click(
fn=process_file_and_save,
inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name],
outputs=output
)
gr.Examples(
examples=[
[None, 1000, 200, True, "", "hf-username/my-first-ocr-dataset"],
[None, 2000, 400, True, "", "hf-username/large-chunk-ocr-data"],
[None, 0, 0, False, "", "hf-username/header-only-ocr-data"], # Example for header-only splitting
],
inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name],
outputs=output,
fn=process_file_and_save, # Make examples clickable
cache_examples=False # Avoid caching as it involves API calls and file processing
)
gr.Markdown("--- \n *Requires `MISTRAL_API_KEY` environment variable or being logged in via `huggingface-cli login`.*")
# --- Launch the Gradio App ---
if __name__ == "__main__":
# Check if client initialization failed earlier
if not client and api_key: # Check if key was present but init failed
print("\nCRITICAL: Mistral client failed to initialize. The application cannot perform OCR.")
print("Please check your MISTRAL_API_KEY and network connection.\n")
# Optionally exit, or let Gradio launch with limited functionality
# exit(1)
elif not client and not api_key:
print("\nWARNING: Mistral client not initialized because no API key was found.")
print("OCR functionality will fail. Please set MISTRAL_API_KEY or log in via `huggingface-cli login`.\n")
# share=True creates a public link (useful for Colab/Spaces)
# debug=True provides detailed errors in the console during development
demo.launch(share=os.getenv('GRADIO_SHARE', 'False').lower() == 'true', debug=True,)