tomtat / llm.py
tiendung's picture
new files
cec26ce
raw
history blame
10.4 kB
#!/usr/bin/env python3
import utils; from utils import *
import os, sys, lzma, json, pprint, time, subprocess
thinker = os.getenv("thinker", "gemini")
TEMPERATURE = float(os.getenv("temperature", 0.1)) # 0.0 conservative (good for coding and correct syntax)
LLM_HOST = "gemini"
TKNZ_RATIO = 1
GEMINI_MODEL = 'gemini-1.5-pro-002'
FLASH_MODEL = 'gemini-1.5-flash-002'
# https://github.com/google-gemini/cookbook/blob/main/quickstarts/Prompting.ipynb
# https://github.com/google-gemini/cookbook/blob/main/quickstarts/Streaming.ipynb
import google.generativeai as genai # pip install -U -q google-generativeai
llm_log_filename = f"{location__}/data/llm.log"
genai.configure(api_key=os.getenv("GEMINI_FLASH_API_KEY"))
GEMINI_CLIENT = genai.GenerativeModel(GEMINI_MODEL, \
generation_config=genai.GenerationConfig(
max_output_tokens=1024*4,
temperature=TEMPERATURE
))
def chat(prompt, history=[], use_cache=False, stream=False):
if stream: return GEMINI_CLIENT.generate_content(prompt, stream=True)
messages = history + [{"role": "user", "content": prompt}] # fake history
with open(llm_log_filename,"at") as f: f.write(f"\n- - - [ {GEMINI_MODEL} ] - - -\n\nPROMPT:\n{prompt}\n")
try:
res = GEMINI_CLIENT.generate_content(prompt, request_options = { "timeout": 6000 })
with open(llm_log_filename,"at") as f: f.write(f"\nRESPONSE:\n{res}\n"); f.write(f"\nCONTENT:\n{res.text}\n")
messages += [{"role": "assistant", "content": res.text}]
return messages
except Exception as e:
with open(llm_log_filename,"at") as f: f.write(f"\nEXCEPTION:\n{e}\n")
print(f"\nEXCEPTION:\n{e}\n"); raise e
FLASH_CLIENT = genai.GenerativeModel(FLASH_MODEL, \
generation_config=genai.GenerationConfig(
max_output_tokens=1024*8,
temperature=TEMPERATURE
))
# def flash_chat(prompt, history=[], use_cache=False, stream=False):
# res = FLASH_CLIENT.generate_content(prompt)
# return [{"role": "assistant", "content": res.text}]
flash_chat = chat
def who_are_you():
print(f"{RED}{LLM_HOST}{RESET} " * 2)
if thinker == "gemini": # gemini pro
CTXLEN = 1024*64 # gemini thì vô tư, 128k hoặc 1m ctxlen đều OK
thinker_chat = chat
elif thinker in "70b|405b":
cache_filename = f"{location__}/data/thinker.jsonl.xz"
lock_filename = f"{location__}/data/thinker.lock"
log_filename = f"{location__}/data/thinker.log"
## Load thinker_cache
lines = [] if not os.path.exists(cache_filename) else \
[ line for line in lzma.open(cache_filename,"rt") ]
assert len(lines) % 2 == 0
thinker_cache = {}; i = 0
while i < len(lines): # line có \n ở cuối nên [:-1] để bỏ đi
thinker_cache[lines[i][:-1]] = json.loads(lines[i+1])
i += 2
lines = None # Done loading
# https://docs.together.ai/docs/chat-models#hosted-models
model = {
"405b": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo 8k 3k 1.2", # $5.00 / 1m tokens(*)
"70b": "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo 128k 4k 1.2", # $0.88 / 1m tokens(*)
}[thinker]
model, CTXLEN, MAX_TOKENS, TKNZ_RATIO = model.strip().split()
LLM_HOST = model
MAX_TOKENS = int(MAX_TOKENS[:-1])*1024
TKNZ_RATIO = float(TKNZ_RATIO)
CTXLEN = int(CTXLEN[:-1])
if CTXLEN > 32: CTXLEN = 32 # max 32k ctxlen
CTXLEN = CTXLEN*1024 - MAX_TOKENS
# print(model, CTXLEN, MAX_TOKENS, TKNZ_RATIO); input(); # DEBUG
from together import Together
together_client = Together(api_key=os.environ.get('TOGETHER_API_KEY'))
###
stops = ["<|eot_id|>","<|eom_id|>","</answer>","</output>"]
def thinker_chat(prompt, history=[], stream=False, use_cache=True, testing=False):
if stream:
with open(log_filename,"at") as f: f.write(f"\n- - - [ {LLM_HOST} ] - - -\n\nPROMPT:\n{prompt}\n")
return together_client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=MAX_TOKENS,
temperature=TEMPERATURE,
top_p=0.7, top_k=50,
repetition_penalty=1.2, stop=stops,
stream=True
)
messages = history + [{"role": "user", "content": prompt}]
messages_jsonl = json.dumps(messages, ensure_ascii=False)
cache_found = (messages_jsonl in thinker_cache)
if use_cache and cache_found:
print(f"{YELLOW}<<< cached content >>>{RESET}")
content = thinker_cache[messages_jsonl]
elif testing:
print(f"{RED}<<< testing content >>>{RESET}")
content = "testing testing"
else:
print(f"{GREEN}<<< fresh content >>>{RESET}")
with open(log_filename,"at") as f: f.write(f"\n- - - [ {LLM_HOST} ] - - -\n\nPROMPT:\n{prompt}\n")
try:
response = Together(api_key=os.environ.get('TOGETHER_API_KEY')).chat.completions.create(
model=model,
messages=messages,
max_tokens=MAX_TOKENS,
temperature=TEMPERATURE,
top_p=0.7, top_k=50,
repetition_penalty=1.2, stop=stops,
logprobs=1, stream=False
)
except Exception as e:
with open(log_filename,"at") as f: f.write(f"\nEXCEPTION:\n{e}\n")
print(f"\nEXCEPTION:\n{e}\n"); raise e
content = response.choices[0].message.content
with open(log_filename,"at") as f:
f.write(f"\nRESPONSE:\n{response}\n")
f.write(f"\nCONTENT:\n{content}\n")
thinker_cache[messages_jsonl] = content # update new generated content
waits = 5
while waits > 0 and os.path.exists(lock_filename): # có người đang write, wait
waits -= 1
time.sleep(0.2)
if waits == 0:
assert False, f"Bị lock hơn 1 second, có thể xóa {lock_filename} nếu lỗi này lặp lại"
subprocess.run(f"touch {lock_filename}", shell=True) # lock
with lzma.open(cache_filename,"at") as f: # write
f.write(f"{messages_jsonl}\n{json.dumps(content, ensure_ascii=False)}\n")
subprocess.run(f"rm {lock_filename}", shell=True) # unlock
messages += [{"role": "assistant", "content": content}]
return messages
elif thinker in "gemma2:27b|commandr:35b|llama3.1:70b":
#################
## Ollama connect
import subprocess, ollama # pip install ollama
try: ollama.list()
except: subprocess.run('nohup ssh -N -L 11434:localhost:11434 -p 22021 [email protected] &', shell=True)
subprocess.run('nohup ssh -N -L 9999:localhost:11434 -p 17340 [email protected] &', shell=True)
#################
OLLAMA_CLIENT = ollama.Client(host='http://localhost:11434')
machine = "RTX-4090-24G"
## ~30b models
if thinker in "gemma2:27b": OLLAMA_MODEL = "gemma2:27b-instruct-q5_K_M" ; CTXLEN = 512*14 # fit 24G
elif thinker in "commandr:35b": OLLAMA_MODEL = "command-r:35b-08-2024-q4_K_M" ; CTXLEN = 512*18 # fit 24G
else: OLLAMA_MODEL = "not found"
try: connect_to_4090 = OLLAMA_MODEL in str(ollama.list())
except: connect_to_4090 = False
if not connect_to_4090: # switch to A100
OLLAMA_CLIENT = ollama.Client(host='http://localhost:9999')
machine = "A100-PCIE-40GB"
## ~30b to ~70b models
if thinker in "gemma2:27b": OLLAMA_MODEL = "gemma2:27b-instruct-q8_0" ; CTXLEN = 1024*24
elif thinker in "commandr:35b": OLLAMA_MODEL = "command-r:35b-08-2024-q8_0" ; CTXLEN = 1024*32
elif thinker in "llama3.1:70b": OLLAMA_MODEL = "llama3.1:70b-instruct-q3_K_M" ; CTXLEN = 1024*12#fit 40G
LLM_HOST = f"{machine}__{OLLAMA_MODEL}"
def thinker_chat(prompt, history=[], stream=False, use_cache=False):
if stream:
with open(llm_log_filename,"at") as f: f.write(f"\n- - - [ {LLM_HOST} ] - - -\n\nPROMPT:\n{prompt}\n")
return OLLAMA_CLIENT.chat(model=OLLAMA_MODEL, messages=[{"role": "user", "content": prompt}], \
stream=True, options={'num_ctx': CTXLEN, 'temperature': TEMPERATURE})
messages = history + [{"role": "user", "content": prompt}]
with open(llm_log_filename,"at") as f: f.write(f"\n- - - [ {LLM_HOST} ] - - -\n\nPROMPT:\n{prompt}\n")
res = OLLAMA_CLIENT.chat(model=OLLAMA_MODEL, messages=messages, options={'temperature': TEMPERATURE})
content = res["message"]["content"]
with open(llm_log_filename,"at") as f: f.write(f"\nCONTENT:\n{content}\n")
messages += [{"role": "assistant", "content": content}]
return messages
## To make it's 100% local llm, normal chat can also use thinker
# chat = thinker_chat
LLM_HOST += f"__{round(CTXLEN/1024)}k_ctxlen"
who_are_you()
from prompts import summary_template
from prompts import contextual_template, clean_view_template
USE_CACHE = os.getenv("cache", "1") == "1"
def extract_keyphrases_figures_summary(text):
if len(text) < 80: return ""
prompt = summary_template.format(text = text)
print(f"{GREEN}{text}{RESET}")
utils.reset_timer(timer = "extract_keyphrases_figures_summary")
res = chat(prompt, use_cache = USE_CACHE)
utils.measure_time("", timer = "extract_keyphrases_figures_summary")
raw = res[-1]["content"]
print(f"{MAGENTA}{raw}{RESET}")
return raw
def gen_contextual(document, chunk):
prompt = contextual_template.format(document = document, chunk = chunk)
res = thinker_chat(prompt, use_cache = USE_CACHE)
contextual = res[-1]["content"].strip()
return contextual
def gen_clean_view(document):
prompt = clean_view_template.format(document = document)
res = chat(prompt, use_cache = USE_CACHE)
ret = res[-1]["content"].strip()
return ret
if __name__ == "__main__":
try: filename = sys.argv[1]
except: filename = None
if filename: q = open(filename, "rt").read()
else: q = "What's your name? Who created you?"
utils.reset_timer(); res = thinker_chat(q, use_cache=False)
utils.measure_time(LLM_HOST + " ")
print(f"{CYAN}{q}{RESET}", end="\n\n"); print(res[-1]["content"])