Spaces:
Running
Running
File size: 9,319 Bytes
0e92f07 494bf87 72ca5f8 494bf87 0e92f07 494bf87 0e92f07 494bf87 9a4568b 0e92f07 9a4568b 494bf87 7361300 9a4568b 494bf87 9a4568b 494bf87 7361300 9a4568b 494bf87 9a4568b 494bf87 72ca5f8 494bf87 7361300 494bf87 7361300 494bf87 7361300 494bf87 9a4568b 7361300 494bf87 7361300 494bf87 7361300 494bf87 7361300 494bf87 7361300 494bf87 7361300 494bf87 7361300 494bf87 9a4568b 494bf87 7361300 9a4568b 494bf87 9a4568b 7361300 494bf87 7361300 9a4568b 494bf87 7361300 494bf87 7361300 9a4568b 7361300 494bf87 7361300 1b892e4 494bf87 7361300 9a4568b 494bf87 7361300 494bf87 72ca5f8 0e92f07 494bf87 0e92f07 494bf87 7361300 494bf87 7361300 494bf87 0e92f07 494bf87 9a4568b 494bf87 7361300 494bf87 9a4568b 494bf87 9a4568b 0e92f07 494bf87 7361300 9a4568b 7361300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import psutil
import re
import gc
# Initialize logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
# List of memory-optimized models
MEMORY_OPTIMIZED_MODELS = [
"gpt2", # ~500MB
"distilgpt2", # ~250MB
"microsoft/DialoGPT-small", # ~250MB
"huggingface/CodeBERTa-small-v1", # Code tasks
]
# Singleton state
_generator_instance = None
def get_optimal_model_for_memory():
"""Select the best model based on available memory."""
available_memory = psutil.virtual_memory().available / (1024 * 1024) # MB
logger.info(f"Available memory: {available_memory:.1f}MB")
if available_memory < 300:
return None # Use template fallback
elif available_memory < 600:
return "microsoft/DialoGPT-small"
else:
return "distilgpt2"
def load_model_with_memory_optimization(model_name):
"""Load model with low memory settings."""
try:
logger.info(f"Loading {model_name} with memory optimizations...")
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', use_fast=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu",
low_cpu_mem_usage=True,
use_cache=False,
)
model.eval()
model.gradient_checkpointing_enable()
logger.info(f"β
Model {model_name} loaded successfully")
return tokenizer, model
except Exception as e:
logger.error(f"β Failed to load model {model_name}: {e}")
return None, None
def extract_keywords(text):
common_keywords = [
'login', 'authentication', 'user', 'password', 'database', 'data',
'interface', 'api', 'function', 'feature', 'requirement', 'system',
'input', 'output', 'validation', 'error', 'security', 'performance'
]
words = re.findall(r'\b\w+\b', text.lower())
return [word for word in words if word in common_keywords]
def generate_template_based_test_cases(srs_text):
keywords = extract_keywords(srs_text)
test_cases = []
if any(word in keywords for word in ['login', 'authentication', 'user', 'password']):
test_cases.extend([
{
"id": "TC_001",
"title": "Valid Login Test",
"description": "Test login with valid credentials",
"steps": ["Enter valid username", "Enter valid password", "Click login"],
"expected": "User should be logged in successfully"
},
{
"id": "TC_002",
"title": "Invalid Login Test",
"description": "Test login with invalid credentials",
"steps": ["Enter invalid username", "Enter invalid password", "Click login"],
"expected": "Error message should be displayed"
}
])
if any(word in keywords for word in ['database', 'data', 'store', 'save']):
test_cases.append({
"id": "TC_003",
"title": "Data Storage Test",
"description": "Test data storage functionality",
"steps": ["Enter data", "Save data", "Verify storage"],
"expected": "Data should be stored correctly"
})
if not test_cases:
test_cases = [
{
"id": "TC_001",
"title": "Basic Functionality Test",
"description": "Test basic system functionality",
"steps": ["Access the system", "Perform basic operations", "Verify results"],
"expected": "System should work as expected"
}
]
return test_cases
def parse_generated_test_cases(generated_text):
lines = generated_text.split('\n')
test_cases = []
current_case = {}
case_counter = 1
for line in lines:
line = line.strip()
if line.startswith(('1.', '2.', '3.', 'TC', 'Test')):
if current_case:
test_cases.append(current_case)
current_case = {
"id": f"TC_{case_counter:03d}",
"title": line,
"description": line,
"steps": ["Execute the test"],
"expected": "Test should pass"
}
case_counter += 1
if current_case:
test_cases.append(current_case)
if not test_cases:
return [{
"id": "TC_001",
"title": "Generated Test Case",
"description": "Auto-generated test case based on requirements",
"steps": ["Review requirements", "Execute test", "Verify results"],
"expected": "Requirements should be met"
}]
return test_cases
def generate_with_ai_model(srs_text, tokenizer, model):
max_input_length = 200
if len(srs_text) > max_input_length:
srs_text = srs_text[:max_input_length]
prompt = f"""Generate test cases for this software requirement:
{srs_text}
Test Cases:
1."""
try:
inputs = tokenizer.encode(
prompt,
return_tensors="pt",
max_length=150,
truncation=True
)
with torch.no_grad():
outputs = model.generate(
inputs,
max_new_tokens=100,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
use_cache=False,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
del inputs, outputs
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return parse_generated_test_cases(generated_text)
except Exception as e:
logger.error(f"β AI generation failed: {e}")
raise
def generate_with_fallback(srs_text):
model_name = get_optimal_model_for_memory()
if model_name:
tokenizer, model = load_model_with_memory_optimization(model_name)
if tokenizer and model:
try:
test_cases = generate_with_ai_model(srs_text, tokenizer, model)
reason = get_algorithm_reason(model_name)
return test_cases, model_name, "transformer (causal LM)", reason
except Exception as e:
logger.warning(f"AI generation failed: {e}, falling back to templates")
logger.info("β οΈ Using fallback template-based generation")
test_cases = generate_template_based_test_cases(srs_text)
return test_cases, "Template-Based Generator", "rule-based", "Low memory - fallback to rule-based generation"
# β
Function exposed to app.py
def generate_test_cases(srs_text):
return generate_with_fallback(srs_text)[0]
def get_generator():
global _generator_instance
if _generator_instance is None:
class Generator:
def __init__(self):
self.model_name = get_optimal_model_for_memory()
self.tokenizer = None
self.model = None
if self.model_name:
self.tokenizer, self.model = load_model_with_memory_optimization(self.model_name)
def get_model_info(self):
mem = psutil.Process().memory_info().rss / 1024 / 1024
return {
"model_name": self.model_name if self.model_name else "Template-Based Generator",
"status": "loaded" if self.model else "template_mode",
"memory_usage": f"{mem:.1f}MB",
"optimization": "low_memory"
}
_generator_instance = Generator()
return _generator_instance
def monitor_memory():
mem = psutil.Process().memory_info().rss / 1024 / 1024
logger.info(f"Memory usage: {mem:.1f}MB")
if mem > 450:
gc.collect()
logger.info("Memory cleanup triggered")
# β
NEW FUNCTION for enhanced output: test cases + model info + reason
def generate_test_cases_and_info(input_text):
test_cases, model_name, algorithm_used, reason = generate_with_fallback(input_text)
return {
"model": model_name,
"algorithm": algorithm_used,
"reason": reason,
"test_cases": test_cases
}
# β
Explain why each algorithm is selected
def get_algorithm_reason(model_name):
if model_name == "microsoft/DialoGPT-small":
return "Selected due to low memory availability; DialoGPT-small provides conversational understanding in limited memory environments."
elif model_name == "distilgpt2":
return "Selected for its balance between performance and low memory usage. Ideal for small environments needing causal language modeling."
elif model_name == "gpt2":
return "Chosen for general-purpose text generation with moderate memory headroom."
elif model_name is None:
return "No model used due to insufficient memory. Rule-based template generation chosen instead."
else:
return "Model selected based on best tradeoff between memory usage and language generation capability." |