Spaces:
Running
Running
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import logging | |
import psutil | |
import re | |
import gc | |
# Initialize logger | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO) | |
# List of memory-optimized models | |
MEMORY_OPTIMIZED_MODELS = [ | |
"gpt2", # ~500MB | |
"distilgpt2", # ~250MB | |
"microsoft/DialoGPT-small", # ~250MB | |
"huggingface/CodeBERTa-small-v1", # Code tasks | |
] | |
# Singleton state | |
_generator_instance = None | |
def get_optimal_model_for_memory(): | |
"""Select the best model based on available memory.""" | |
available_memory = psutil.virtual_memory().available / (1024 * 1024) # MB | |
logger.info(f"Available memory: {available_memory:.1f}MB") | |
if available_memory < 300: | |
return None # Use template fallback | |
elif available_memory < 600: | |
return "microsoft/DialoGPT-small" | |
else: | |
return "distilgpt2" | |
def load_model_with_memory_optimization(model_name): | |
"""Load model with low memory settings.""" | |
try: | |
logger.info(f"Loading {model_name} with memory optimizations...") | |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', use_fast=True) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
device_map="cpu", | |
low_cpu_mem_usage=True, | |
use_cache=False, | |
) | |
model.eval() | |
model.gradient_checkpointing_enable() | |
logger.info(f"β Model {model_name} loaded successfully") | |
return tokenizer, model | |
except Exception as e: | |
logger.error(f"β Failed to load model {model_name}: {e}") | |
return None, None | |
def extract_keywords(text): | |
common_keywords = [ | |
'login', 'authentication', 'user', 'password', 'database', 'data', | |
'interface', 'api', 'function', 'feature', 'requirement', 'system', | |
'input', 'output', 'validation', 'error', 'security', 'performance' | |
] | |
words = re.findall(r'\b\w+\b', text.lower()) | |
return [word for word in words if word in common_keywords] | |
def generate_template_based_test_cases(srs_text): | |
keywords = extract_keywords(srs_text) | |
test_cases = [] | |
if any(word in keywords for word in ['login', 'authentication', 'user', 'password']): | |
test_cases.extend([ | |
{ | |
"id": "TC_001", | |
"title": "Valid Login Test", | |
"description": "Test login with valid credentials", | |
"steps": ["Enter valid username", "Enter valid password", "Click login"], | |
"expected": "User should be logged in successfully" | |
}, | |
{ | |
"id": "TC_002", | |
"title": "Invalid Login Test", | |
"description": "Test login with invalid credentials", | |
"steps": ["Enter invalid username", "Enter invalid password", "Click login"], | |
"expected": "Error message should be displayed" | |
} | |
]) | |
if any(word in keywords for word in ['database', 'data', 'store', 'save']): | |
test_cases.append({ | |
"id": "TC_003", | |
"title": "Data Storage Test", | |
"description": "Test data storage functionality", | |
"steps": ["Enter data", "Save data", "Verify storage"], | |
"expected": "Data should be stored correctly" | |
}) | |
if not test_cases: | |
test_cases = [ | |
{ | |
"id": "TC_001", | |
"title": "Basic Functionality Test", | |
"description": "Test basic system functionality", | |
"steps": ["Access the system", "Perform basic operations", "Verify results"], | |
"expected": "System should work as expected" | |
} | |
] | |
return test_cases | |
def parse_generated_test_cases(generated_text): | |
lines = generated_text.split('\n') | |
test_cases = [] | |
current_case = {} | |
case_counter = 1 | |
for line in lines: | |
line = line.strip() | |
if line.startswith(('1.', '2.', '3.', 'TC', 'Test')): | |
if current_case: | |
test_cases.append(current_case) | |
current_case = { | |
"id": f"TC_{case_counter:03d}", | |
"title": line, | |
"description": line, | |
"steps": ["Execute the test"], | |
"expected": "Test should pass" | |
} | |
case_counter += 1 | |
if current_case: | |
test_cases.append(current_case) | |
if not test_cases: | |
return [{ | |
"id": "TC_001", | |
"title": "Generated Test Case", | |
"description": "Auto-generated test case based on requirements", | |
"steps": ["Review requirements", "Execute test", "Verify results"], | |
"expected": "Requirements should be met" | |
}] | |
return test_cases | |
def generate_with_ai_model(srs_text, tokenizer, model): | |
max_input_length = 200 | |
if len(srs_text) > max_input_length: | |
srs_text = srs_text[:max_input_length] | |
prompt = f"""Generate test cases for this software requirement: | |
{srs_text} | |
Test Cases: | |
1.""" | |
try: | |
inputs = tokenizer.encode( | |
prompt, | |
return_tensors="pt", | |
max_length=150, | |
truncation=True | |
) | |
with torch.no_grad(): | |
outputs = model.generate( | |
inputs, | |
max_new_tokens=100, | |
num_return_sequences=1, | |
temperature=0.7, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id, | |
use_cache=False, | |
) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
del inputs, outputs | |
torch.cuda.empty_cache() if torch.cuda.is_available() else None | |
return parse_generated_test_cases(generated_text) | |
except Exception as e: | |
logger.error(f"β AI generation failed: {e}") | |
raise | |
def generate_with_fallback(srs_text): | |
model_name = get_optimal_model_for_memory() | |
if model_name: | |
tokenizer, model = load_model_with_memory_optimization(model_name) | |
if tokenizer and model: | |
try: | |
test_cases = generate_with_ai_model(srs_text, tokenizer, model) | |
reason = get_algorithm_reason(model_name) | |
return test_cases, model_name, "transformer (causal LM)", reason | |
except Exception as e: | |
logger.warning(f"AI generation failed: {e}, falling back to templates") | |
logger.info("β οΈ Using fallback template-based generation") | |
test_cases = generate_template_based_test_cases(srs_text) | |
return test_cases, "Template-Based Generator", "rule-based", "Low memory - fallback to rule-based generation" | |
# β Function exposed to app.py | |
def generate_test_cases(srs_text): | |
return generate_with_fallback(srs_text)[0] | |
def get_generator(): | |
global _generator_instance | |
if _generator_instance is None: | |
class Generator: | |
def __init__(self): | |
self.model_name = get_optimal_model_for_memory() | |
self.tokenizer = None | |
self.model = None | |
if self.model_name: | |
self.tokenizer, self.model = load_model_with_memory_optimization(self.model_name) | |
def get_model_info(self): | |
mem = psutil.Process().memory_info().rss / 1024 / 1024 | |
return { | |
"model_name": self.model_name if self.model_name else "Template-Based Generator", | |
"status": "loaded" if self.model else "template_mode", | |
"memory_usage": f"{mem:.1f}MB", | |
"optimization": "low_memory" | |
} | |
_generator_instance = Generator() | |
return _generator_instance | |
def monitor_memory(): | |
mem = psutil.Process().memory_info().rss / 1024 / 1024 | |
logger.info(f"Memory usage: {mem:.1f}MB") | |
if mem > 450: | |
gc.collect() | |
logger.info("Memory cleanup triggered") | |
# β NEW FUNCTION for enhanced output: test cases + model info + reason | |
def generate_test_cases_and_info(input_text): | |
test_cases, model_name, algorithm_used, reason = generate_with_fallback(input_text) | |
return { | |
"model": model_name, | |
"algorithm": algorithm_used, | |
"reason": reason, | |
"test_cases": test_cases | |
} | |
# β Explain why each algorithm is selected | |
def get_algorithm_reason(model_name): | |
if model_name == "microsoft/DialoGPT-small": | |
return "Selected due to low memory availability; DialoGPT-small provides conversational understanding in limited memory environments." | |
elif model_name == "distilgpt2": | |
return "Selected for its balance between performance and low memory usage. Ideal for small environments needing causal language modeling." | |
elif model_name == "gpt2": | |
return "Chosen for general-purpose text generation with moderate memory headroom." | |
elif model_name is None: | |
return "No model used due to insufficient memory. Rule-based template generation chosen instead." | |
else: | |
return "Model selected based on best tradeoff between memory usage and language generation capability." |