Spaces:
Running
Running
File size: 17,712 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
from typing import Optional, Callable, Tuple
import warnings
from abc import ABC, abstractmethod
from einops import rearrange, repeat
import torch
import torch.nn as nn
def relaxed_one_hot_categorical_without_replacement(temperature, logits, num_samples=1):
# See paper Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement (https://arxiv.org/pdf/1903.06059.pdf)
# for explanation of the trick
scores = (
(torch.distributions.Gumbel(logits, 1).rsample() / temperature)
.softmax(-1)
.clamp_min(1e-10)
)
top_scores, top_indices = torch.topk(
scores,
num_samples,
dim=-1,
)
return scores, top_indices
class AbstractLatentDistribution(nn.Module, ABC):
"""Base class for latent distribution"""
@abstractmethod
def sample(
self, num_samples: int, *args, **kwargs
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Sample from the latent distribution."""
@abstractmethod
def kl_loss(
self,
other: "GaussianLatentDistribution",
threshold: float = 0,
mask_z: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Compute the KL divergence between two latent distributions."""
@abstractmethod
def sampling_loss(self) -> torch.Tensor:
"""Loss of the latent distribution."""
@abstractmethod
def average(
self, other: "AbstractLatentDistribution", weight_other: torch.Tensor
) -> "AbstractLatentDistribution":
"""Average of the latent distribution."""
@abstractmethod
def log_dict(self, type: str) -> dict:
"""Log the latent distribution values."""
class GaussianLatentDistribution(AbstractLatentDistribution):
"""Gaussian latent distribution"""
def __init__(self, latent_representation: torch.Tensor):
super().__init__()
mu, logvar = torch.chunk(latent_representation, 2, dim=-1)
self.register_buffer("mu", mu, False)
self.register_buffer("logvar", logvar, False)
def sample(
self, n_samples: int = 0, *args, **kwargs
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Sample from Gaussian with a reparametrization trick
Args:
n_samples (optional): number of samples to make, (if 0 one sample with no extra
dimension). Defaults to 0.
Returns:
Random Gaussian sample of size (some_shape, (n_samples), latent_dim)
"""
std = (self.logvar / 2).exp()
if n_samples <= 0:
eps = torch.randn_like(std)
latent_samples = self.mu + eps * std
weights = torch.ones_like(latent_samples[..., 0])
else:
eps = torch.randn(
[*std.shape[:-1], n_samples, self.mu.shape[-1]], device=std.device
)
# Reshape
latent_samples = self.mu.unsqueeze(-2) + eps * std.unsqueeze(-2)
weights = torch.ones_like(latent_samples[..., 0]) / n_samples
return latent_samples, weights
def kl_loss(
self,
other: "GaussianLatentDistribution",
threshold: float = 0,
mask_z: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Compute the KL divergence between two latent distributions."""
assert type(other) == GaussianLatentDistribution
kl_loss = (
(other.logvar
- self.logvar
+ ((self.mu - other.mu).square() + self.logvar.exp()) / other.logvar.exp()
- 1)*0.5
).clamp_min(threshold)
if mask_z is None:
return kl_loss.mean()
else:
assert mask_z.any()
return torch.sum(kl_loss.mean(-1) * mask_z) / torch.sum(mask_z)
def sampling_loss(self) -> torch.Tensor:
return torch.zeros(1, device=self.mu.device)
def average(
self, other: "GaussianLatentDistribution", weight_other: torch.Tensor
) -> "GaussianLatentDistribution":
assert type(other) == GaussianLatentDistribution
assert other.mu.shape == self.mu.shape
average_log_var = (
self.logvar.exp() * (1 - weight_other) + other.logvar.exp() * weight_other
).log()
return GaussianLatentDistribution(
torch.cat(
(
self.mu * (1 - weight_other) + other.mu * weight_other,
average_log_var,
),
dim=-1,
)
)
def log_dict(self, type: str) -> dict:
return {
f"latent/{type}/abs_mean": self.mu.abs().mean(),
f"latent/{type}/std": (self.logvar * 0.5).exp().mean(),
}
class QuantizedLatentDistribution(AbstractLatentDistribution):
"""Quantized latent distribution.
It is defined with a codebook of quantized latents and a continuous latent.
The distribution is based on distances of the continuous latent to the codebook.
Sampling is only quantizing the continuous latent.
Args:
continuous_latent : Continuous latent representation of shape (some_shape, latent_dim)
codebook : Codebook of shape (num_embeddings, latent_dim)
"""
def __init__(
self,
continuous_latent: torch.Tensor,
codebook: torch.Tensor,
flush_weights: Callable[[], None],
get_weights: Callable[[], torch.Tensor],
index_add_one_weights: Callable[[torch.Tensor], None],
):
super().__init__()
self.register_buffer("continuous_latent", continuous_latent, False)
self.register_buffer("codebook", codebook, False)
self.flush_weights = flush_weights
self.get_weights = get_weights
self.index_add_one_weights = index_add_one_weights
self.quantization_loss = None
self.accuracy = None
def sample(
self, n_samples: int = 0, *args, **kwargs
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Quantize the continuous latent from the latent dictionary.
Args:
latent: (batch_size, num_agents, latent_dim) Continuous latent input
Returns:
quantized_latent, quantization_loss
"""
assert n_samples == 0, "Only one sample is supported for quantized latent"
distances_to_quantized = (
(
self.codebook.view(1, 1, *self.codebook.shape)
- self.continuous_latent.unsqueeze(-2)
)
.square()
.sum(-1)
)
batch_size, num_agents, num_vq = distances_to_quantized.shape
self.soft_one_hot = (
(-100 * distances_to_quantized)
.softmax(dim=-1)
.view(batch_size, num_agents, num_vq)
)
# quantized, args_selected = self.sample(soft_one_hot)
_, args_selected = torch.min(distances_to_quantized, dim=-1)
quantized = self.codebook[args_selected, :]
args_selected = args_selected.view(-1)
# Update weights
self.index_add_one_weights(args_selected)
distances_to_quantized = distances_to_quantized.view(
batch_size * num_agents, num_vq
)
# Resample useless latent vectors
random_latents = self.continuous_latent.view(
batch_size * num_agents, self.codebook.shape[-1]
)[torch.randint(batch_size * num_agents, (num_vq,))]
codebook_weights = self.get_weights()
total_samples = codebook_weights.sum()
# TODO: The value 100 is arbitrary, should it be a parameter?
# The uselessness of a codebook vector is defined by the number of times it has been sampled
# if it has been sampled less than 1% of the time, it is pushed towards a random continuous latent sample
# this prevents the codebook from being dominated by a few vectors
self.uselessness = (
(
torch.where(
(codebook_weights < total_samples / (100 * num_vq)).unsqueeze(-1),
random_latents.detach() - self.codebook,
torch.zeros_like(self.codebook),
).abs()
+ 1
)
.log()
.sum(-1)
.mean()
)
# TODO: The value 1e6 is arbitrary, should it be a parameter?
if total_samples > 1e6 * num_vq:
# Flush the codebook weights when the number of samples is too high
# This prevents the codebook from being dominated by its history
# if a few vectors were visited a lot and also prevents overflows
self.flush_weights()
# commit_loss = (self.continuous_latent - quantized.detach()).square().clamp_min(self.distance_threshold).sum(-1).mean()
self.quantization_loss = (
(self.continuous_latent - quantized).square().sum(-1).mean()
)
quantized = (
quantized.detach()
+ self.continuous_latent
- self.continuous_latent.detach()
)
self.latent_diversity = (
(self.continuous_latent[None, ...] - self.continuous_latent[:, None, ...])
.square()
.sum(-1)
.mean()
)
return quantized, torch.ones_like(quantized[..., 0]) / num_vq
def kl_loss(
self,
other: "ClassifiedLatentDistribution",
threshold: float = 0,
mask_z: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Compute the cross entropy between two latent distributions."""
assert type(other) == ClassifiedLatentDistribution
min_logits = -10
max_logits = 10
pred_log = other.logits.clamp(min_logits, max_logits).log_softmax(-1)
self_pred = self.soft_one_hot
self.accuracy = (self_pred.argmax(-1) == other.logits.argmax(-1)).float().mean()
return -2 * (pred_log * self_pred).sum(-1).mean()
def sampling_loss(self) -> torch.Tensor:
if self.quantization_loss is None:
self.sample()
return 0.5 * (
self.quantization_loss + self.uselessness + 0.001 * self.latent_diversity
)
def average(
self, other: "QuantizedLatentDistribution", weight_other: torch.Tensor
) -> "QuantizedLatentDistribution":
raise NotImplementedError(
"Average is not implemented for QuantizedLatentDistribution"
)
def log_dict(self, type: str) -> dict:
log_dict = {
f"latent/{type}/quantization_loss": self.quantization_loss,
f"latent/{type}/uselessness": self.uselessness,
f"latent/{type}/latent_diversity": self.latent_diversity,
f"latent/{type}/codebook_abs_mean": self.codebook.abs().mean(),
f"latent/{type}/codebook_std": self.codebook.std(),
f"latent/{type}/latent_abs_mean": self.continuous_latent.abs().mean(),
f"latent/{type}/latent_std": self.continuous_latent.std(),
}
if self.accuracy is not None:
log_dict[f"latent/{type}/accuracy"] = self.accuracy
return log_dict
class ClassifiedLatentDistribution(AbstractLatentDistribution):
"""Classified latent distribution.
It is defined with a codebook of quantized latents and a probability distribution over the codebook elements.
Args:
logits : Logits of shape (some_shape, num_embeddings)
codebook : Codebook of shape (num_embeddings, latent_dim)
"""
def __init__(self, logits: torch.Tensor, codebook: torch.Tensor):
super().__init__()
self.register_buffer("logits", logits, persistent=False)
self.register_buffer("codebook", codebook, persistent=False)
def sample(
self, n_samples: int = 0, replacement: bool = True, *args, **kwargs
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, num_agents, num_vq = self.logits.shape
squeeze_out = False
if n_samples == 0:
squeeze_out = True
n_samples = 1
elif n_samples > self.codebook.shape[0]:
warnings.warn(
f"Requested {n_samples} samples but only {self.codebook.shape[0]} are available in the descrete latent space. Switching to replacement=True to support it."
)
replacement = True
if self.training:
# TODO: should we make the temperature a parameter?
all_weights, indices = relaxed_one_hot_categorical_without_replacement(
logits=self.logits, temperature=1, num_samples=n_samples
)
selected_latents = self.codebook[indices, :]
# Cumulative mask of indices that have been sampled in order of probability
mask_selection = torch.nn.functional.one_hot(indices, num_vq).cumsum(-2)
mask_selection[..., 1:, :] = mask_selection[..., :-1, :]
mask_selection[..., 0, :] = 0.0
# Remove the probability of previous samples to account for sampling without replacement
masked_weights = all_weights.unsqueeze(-2) * (1 - mask_selection.float())
# Renormalize the probabilities to sum to 1
masked_weights = masked_weights / masked_weights.sum(-1, keepdim=True)
latent_samples = (
masked_weights.unsqueeze(-1)
* self.codebook[None, None, None, ...].detach()
).sum(-2)
latent_samples = (
selected_latents.detach() + latent_samples - latent_samples.detach()
)
probs = torch.gather(self.logits.softmax(-1), -1, indices)
else:
probs = self.logits.softmax(-1)
samples = torch.multinomial(
probs.view(batch_size * num_agents, num_vq),
n_samples,
replacement=replacement,
)
latent_samples = self.codebook[samples]
probs = torch.gather(
probs, -1, samples.view(batch_size, num_agents, num_vq)
)
if squeeze_out:
latent_samples = latent_samples.view(
batch_size, num_agents, self.codebook.shape[-1]
)
else:
latent_samples = latent_samples.view(
batch_size, num_agents, n_samples, self.codebook.shape[-1]
)
return latent_samples, probs
def kl_loss(
self,
other: "ClassifiedLatentDistribution",
threshold: float = 0,
mask_z: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Compute the cross entropy between two latent distributions. Self being the reference distribution and other the distribution to compare."""
assert type(other) == ClassifiedLatentDistribution
min_logits = -10
max_logits = 10
pred_log = other.logits.clamp(min_logits, max_logits).log_softmax(-1)
self_pred = (
(0.5 * (self.logits.detach() + self.logits))
.clamp(min_logits, max_logits)
.softmax(-1)
)
return -2 * (pred_log * self_pred).sum(-1).mean()
def sampling_loss(self) -> torch.Tensor:
return torch.zeros(1, device=self.logits.device)
def average(
self, other: "ClassifiedLatentDistribution", weight_other: torch.Tensor
) -> "ClassifiedLatentDistribution":
assert type(other) == ClassifiedLatentDistribution
assert (self.codebook == other.codebook).all()
return ClassifiedLatentDistribution(
(
self.logits.exp() * (1 - weight_other)
+ other.logits.exp() * weight_other
).log(),
self.codebook,
)
def log_dict(self, type: str) -> dict:
max_probs, _ = self.logits.softmax(-1).max(-1)
return {
f"latent/{type}/codebook_abs_mean": self.codebook.abs().mean(),
f"latent/{type}/codebook_std": self.codebook.std(),
f"latent/{type}/class_max_mean": max_probs.mean(),
f"latent/{type}/class_max_std": max_probs.std(),
}
class QuantizedDistributionCreator(nn.Module):
"""Creates a distribution from a latent vector."""
def __init__(
self,
latent_dim: int,
num_embeddings: int,
):
super().__init__()
self.latent_dim = latent_dim
self.num_embeddings = num_embeddings
self.codebook = nn.Parameter(torch.randn(num_embeddings, latent_dim))
self.register_buffer(
"codebook_weights",
torch.ones(num_embeddings, requires_grad=False),
persistent=False,
)
def _flush_codebook_weights(self):
self.codebook_weights = torch.ones_like(self.codebook_weights)
def _get_codebook_weights(self):
return self.codebook_weights
def _index_add_one_codebook_weight(self, indices: torch.Tensor):
self.codebook_weights = self.codebook_weights.index_add(
0,
indices.flatten(),
torch.ones_like(self.codebook_weights[indices]),
)
def forward(self, latent: torch.Tensor) -> AbstractLatentDistribution:
if latent.shape[-1] == self.latent_dim:
return QuantizedLatentDistribution(
latent,
self.codebook,
self._flush_codebook_weights,
self._get_codebook_weights,
self._index_add_one_codebook_weight,
)
elif latent.shape[-1] == self.num_embeddings:
return ClassifiedLatentDistribution(
latent,
self.codebook,
)
else:
raise ValueError(f"Latent vector has wrong dimension: {latent.shape[-1]}")
|