File size: 17,712 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from typing import Optional, Callable, Tuple
import warnings

from abc import ABC, abstractmethod
from einops import rearrange, repeat
import torch
import torch.nn as nn


def relaxed_one_hot_categorical_without_replacement(temperature, logits, num_samples=1):
    # See paper Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement (https://arxiv.org/pdf/1903.06059.pdf)
    # for explanation of the trick
    scores = (
        (torch.distributions.Gumbel(logits, 1).rsample() / temperature)
        .softmax(-1)
        .clamp_min(1e-10)
    )
    top_scores, top_indices = torch.topk(
        scores,
        num_samples,
        dim=-1,
    )
    return scores, top_indices


class AbstractLatentDistribution(nn.Module, ABC):
    """Base class for latent distribution"""

    @abstractmethod
    def sample(
        self, num_samples: int, *args, **kwargs
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Sample from the latent distribution."""

    @abstractmethod
    def kl_loss(
        self,
        other: "GaussianLatentDistribution",
        threshold: float = 0,
        mask_z: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Compute the KL divergence between two latent distributions."""

    @abstractmethod
    def sampling_loss(self) -> torch.Tensor:
        """Loss of the latent distribution."""

    @abstractmethod
    def average(
        self, other: "AbstractLatentDistribution", weight_other: torch.Tensor
    ) -> "AbstractLatentDistribution":
        """Average of the latent distribution."""

    @abstractmethod
    def log_dict(self, type: str) -> dict:
        """Log the latent distribution values."""


class GaussianLatentDistribution(AbstractLatentDistribution):
    """Gaussian latent distribution"""

    def __init__(self, latent_representation: torch.Tensor):
        super().__init__()
        mu, logvar = torch.chunk(latent_representation, 2, dim=-1)
        self.register_buffer("mu", mu, False)
        self.register_buffer("logvar", logvar, False)

    def sample(
        self, n_samples: int = 0, *args, **kwargs
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Sample from Gaussian with a reparametrization trick

        Args:
            n_samples (optional): number of samples to make, (if 0 one sample with no extra
                dimension). Defaults to 0.
        Returns:
            Random Gaussian sample of size (some_shape, (n_samples), latent_dim)
        """

        std = (self.logvar / 2).exp()
        if n_samples <= 0:
            eps = torch.randn_like(std)
            latent_samples = self.mu + eps * std            
            weights = torch.ones_like(latent_samples[..., 0]) 
        else:
            eps = torch.randn(
                [*std.shape[:-1], n_samples, self.mu.shape[-1]], device=std.device
            )
            # Reshape
            latent_samples = self.mu.unsqueeze(-2) + eps * std.unsqueeze(-2)
            weights = torch.ones_like(latent_samples[..., 0]) / n_samples
        return latent_samples, weights

    def kl_loss(
        self,
        other: "GaussianLatentDistribution",
        threshold: float = 0,
        mask_z: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Compute the KL divergence between two latent distributions."""
        assert type(other) == GaussianLatentDistribution
        kl_loss = (
            (other.logvar
            - self.logvar
            + ((self.mu - other.mu).square() + self.logvar.exp()) / other.logvar.exp()
            - 1)*0.5
        ).clamp_min(threshold)
        if mask_z is None:
            return kl_loss.mean()
        else:
            assert mask_z.any()
            return torch.sum(kl_loss.mean(-1) * mask_z) / torch.sum(mask_z)

    def sampling_loss(self) -> torch.Tensor:
        return torch.zeros(1, device=self.mu.device)

    def average(
        self, other: "GaussianLatentDistribution", weight_other: torch.Tensor
    ) -> "GaussianLatentDistribution":
        assert type(other) == GaussianLatentDistribution
        assert other.mu.shape == self.mu.shape
        average_log_var = (
            self.logvar.exp() * (1 - weight_other) + other.logvar.exp() * weight_other
        ).log()
        return GaussianLatentDistribution(
            torch.cat(
                (
                    self.mu * (1 - weight_other) + other.mu * weight_other,
                    average_log_var,
                ),
                dim=-1,
            )
        )

    def log_dict(self, type: str) -> dict:
        return {
            f"latent/{type}/abs_mean": self.mu.abs().mean(),
            f"latent/{type}/std": (self.logvar * 0.5).exp().mean(),
        }


class QuantizedLatentDistribution(AbstractLatentDistribution):
    """Quantized latent distribution.
    It is defined with a codebook of quantized latents and a continuous latent.
    The distribution is based on distances of the continuous latent to the codebook.
    Sampling is only quantizing the continuous latent.

    Args:
        continuous_latent : Continuous latent representation of shape (some_shape, latent_dim)
        codebook : Codebook of shape (num_embeddings, latent_dim)
    """

    def __init__(
        self,
        continuous_latent: torch.Tensor,
        codebook: torch.Tensor,
        flush_weights: Callable[[], None],
        get_weights: Callable[[], torch.Tensor],
        index_add_one_weights: Callable[[torch.Tensor], None],
    ):
        super().__init__()
        self.register_buffer("continuous_latent", continuous_latent, False)
        self.register_buffer("codebook", codebook, False)
        self.flush_weights = flush_weights
        self.get_weights = get_weights
        self.index_add_one_weights = index_add_one_weights
        self.quantization_loss = None
        self.accuracy = None

    def sample(
        self, n_samples: int = 0, *args, **kwargs
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Quantize the continuous latent from the latent dictionary.

        Args:
            latent: (batch_size, num_agents, latent_dim) Continuous latent input

        Returns:
            quantized_latent, quantization_loss
        """
        assert n_samples == 0, "Only one sample is supported for quantized latent"

        distances_to_quantized = (
            (
                self.codebook.view(1, 1, *self.codebook.shape)
                - self.continuous_latent.unsqueeze(-2)
            )
            .square()
            .sum(-1)
        )
        batch_size, num_agents, num_vq = distances_to_quantized.shape

        self.soft_one_hot = (
            (-100 * distances_to_quantized)
            .softmax(dim=-1)
            .view(batch_size, num_agents, num_vq)
        )
        # quantized, args_selected = self.sample(soft_one_hot)
        _, args_selected = torch.min(distances_to_quantized, dim=-1)
        quantized = self.codebook[args_selected, :]
        args_selected = args_selected.view(-1)

        # Update weights
        self.index_add_one_weights(args_selected)

        distances_to_quantized = distances_to_quantized.view(
            batch_size * num_agents, num_vq
        )

        # Resample useless latent vectors
        random_latents = self.continuous_latent.view(
            batch_size * num_agents, self.codebook.shape[-1]
        )[torch.randint(batch_size * num_agents, (num_vq,))]
        codebook_weights = self.get_weights()
        total_samples = codebook_weights.sum()
        # TODO: The value 100 is arbitrary, should it be a parameter?
        # The uselessness of a codebook vector is defined by the number of times it has been sampled
        # if it has been sampled less than 1% of the time, it is pushed towards a random continuous latent sample
        # this prevents the codebook from being dominated by a few vectors
        self.uselessness = (
            (
                torch.where(
                    (codebook_weights < total_samples / (100 * num_vq)).unsqueeze(-1),
                    random_latents.detach() - self.codebook,
                    torch.zeros_like(self.codebook),
                ).abs()
                + 1
            )
            .log()
            .sum(-1)
            .mean()
        )
        # TODO: The value 1e6 is arbitrary, should it be a parameter?
        if total_samples > 1e6 * num_vq:
            # Flush the codebook weights when the number of samples is too high
            # This prevents the codebook from being dominated by its history
            # if a few vectors were visited a lot and also prevents overflows
            self.flush_weights()

        # commit_loss = (self.continuous_latent - quantized.detach()).square().clamp_min(self.distance_threshold).sum(-1).mean()

        self.quantization_loss = (
            (self.continuous_latent - quantized).square().sum(-1).mean()
        )

        quantized = (
            quantized.detach()
            + self.continuous_latent
            - self.continuous_latent.detach()
        )

        self.latent_diversity = (
            (self.continuous_latent[None, ...] - self.continuous_latent[:, None, ...])
            .square()
            .sum(-1)
            .mean()
        )

        return quantized, torch.ones_like(quantized[..., 0]) / num_vq

    def kl_loss(
        self,
        other: "ClassifiedLatentDistribution",
        threshold: float = 0,
        mask_z: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Compute the cross entropy between two latent distributions."""
        assert type(other) == ClassifiedLatentDistribution
        min_logits = -10
        max_logits = 10
        pred_log = other.logits.clamp(min_logits, max_logits).log_softmax(-1)
        self_pred = self.soft_one_hot
        self.accuracy = (self_pred.argmax(-1) == other.logits.argmax(-1)).float().mean()
        return -2 * (pred_log * self_pred).sum(-1).mean()

    def sampling_loss(self) -> torch.Tensor:
        if self.quantization_loss is None:
            self.sample()
        return 0.5 * (
            self.quantization_loss + self.uselessness + 0.001 * self.latent_diversity
        )

    def average(
        self, other: "QuantizedLatentDistribution", weight_other: torch.Tensor
    ) -> "QuantizedLatentDistribution":
        raise NotImplementedError(
            "Average is not implemented for QuantizedLatentDistribution"
        )

    def log_dict(self, type: str) -> dict:
        log_dict = {
            f"latent/{type}/quantization_loss": self.quantization_loss,
            f"latent/{type}/uselessness": self.uselessness,
            f"latent/{type}/latent_diversity": self.latent_diversity,
            f"latent/{type}/codebook_abs_mean": self.codebook.abs().mean(),
            f"latent/{type}/codebook_std": self.codebook.std(),
            f"latent/{type}/latent_abs_mean": self.continuous_latent.abs().mean(),
            f"latent/{type}/latent_std": self.continuous_latent.std(),
        }
        if self.accuracy is not None:
            log_dict[f"latent/{type}/accuracy"] = self.accuracy
        return log_dict


class ClassifiedLatentDistribution(AbstractLatentDistribution):
    """Classified latent distribution.
    It is defined with a codebook of quantized latents and a probability distribution over the codebook elements.

    Args:
        logits : Logits of shape (some_shape, num_embeddings)
        codebook : Codebook of shape (num_embeddings, latent_dim)
    """

    def __init__(self, logits: torch.Tensor, codebook: torch.Tensor):
        super().__init__()
        self.register_buffer("logits", logits, persistent=False)
        self.register_buffer("codebook", codebook, persistent=False)

    def sample(
        self, n_samples: int = 0, replacement: bool = True, *args, **kwargs
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size, num_agents, num_vq = self.logits.shape
        squeeze_out = False
        if n_samples == 0:
            squeeze_out = True
            n_samples = 1
        elif n_samples > self.codebook.shape[0]:
            warnings.warn(
                f"Requested {n_samples} samples but only {self.codebook.shape[0]} are available in the descrete latent space. Switching to replacement=True to support it."
            )
            replacement = True

        if self.training:
            # TODO: should we make the temperature a parameter?
            all_weights, indices = relaxed_one_hot_categorical_without_replacement(
                logits=self.logits, temperature=1, num_samples=n_samples
            )
            selected_latents = self.codebook[indices, :]
            # Cumulative mask of indices that have been sampled in order of probability
            mask_selection = torch.nn.functional.one_hot(indices, num_vq).cumsum(-2)
            mask_selection[..., 1:, :] = mask_selection[..., :-1, :]
            mask_selection[..., 0, :] = 0.0
            # Remove the probability of previous samples to account for sampling without replacement
            masked_weights = all_weights.unsqueeze(-2) * (1 - mask_selection.float())
            # Renormalize the probabilities to sum to 1
            masked_weights = masked_weights / masked_weights.sum(-1, keepdim=True)

            latent_samples = (
                masked_weights.unsqueeze(-1)
                * self.codebook[None, None, None, ...].detach()
            ).sum(-2)
            latent_samples = (
                selected_latents.detach() + latent_samples - latent_samples.detach()
            )
            probs = torch.gather(self.logits.softmax(-1), -1, indices)
        else:
            probs = self.logits.softmax(-1)
            samples = torch.multinomial(
                probs.view(batch_size * num_agents, num_vq),
                n_samples,
                replacement=replacement,
            )
            latent_samples = self.codebook[samples]
            probs = torch.gather(
                probs, -1, samples.view(batch_size, num_agents, num_vq)
            )

        if squeeze_out:
            latent_samples = latent_samples.view(
                batch_size, num_agents, self.codebook.shape[-1]
            )
        else:
            latent_samples = latent_samples.view(
                batch_size, num_agents, n_samples, self.codebook.shape[-1]
            )
        return latent_samples, probs

    def kl_loss(
        self,
        other: "ClassifiedLatentDistribution",
        threshold: float = 0,
        mask_z: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Compute the cross entropy between two latent distributions. Self being the reference distribution and other the distribution to compare."""
        assert type(other) == ClassifiedLatentDistribution
        min_logits = -10
        max_logits = 10
        pred_log = other.logits.clamp(min_logits, max_logits).log_softmax(-1)
        self_pred = (
            (0.5 * (self.logits.detach() + self.logits))
            .clamp(min_logits, max_logits)
            .softmax(-1)
        )
        return -2 * (pred_log * self_pred).sum(-1).mean()

    def sampling_loss(self) -> torch.Tensor:
        return torch.zeros(1, device=self.logits.device)

    def average(
        self, other: "ClassifiedLatentDistribution", weight_other: torch.Tensor
    ) -> "ClassifiedLatentDistribution":
        assert type(other) == ClassifiedLatentDistribution
        assert (self.codebook == other.codebook).all()
        return ClassifiedLatentDistribution(
            (
                self.logits.exp() * (1 - weight_other)
                + other.logits.exp() * weight_other
            ).log(),
            self.codebook,
        )

    def log_dict(self, type: str) -> dict:
        max_probs, _ = self.logits.softmax(-1).max(-1)
        return {
            f"latent/{type}/codebook_abs_mean": self.codebook.abs().mean(),
            f"latent/{type}/codebook_std": self.codebook.std(),
            f"latent/{type}/class_max_mean": max_probs.mean(),
            f"latent/{type}/class_max_std": max_probs.std(),
        }


class QuantizedDistributionCreator(nn.Module):
    """Creates a distribution from a latent vector."""

    def __init__(
        self,
        latent_dim: int,
        num_embeddings: int,
    ):
        super().__init__()
        self.latent_dim = latent_dim
        self.num_embeddings = num_embeddings
        self.codebook = nn.Parameter(torch.randn(num_embeddings, latent_dim))
        self.register_buffer(
            "codebook_weights",
            torch.ones(num_embeddings, requires_grad=False),
            persistent=False,
        )

    def _flush_codebook_weights(self):
        self.codebook_weights = torch.ones_like(self.codebook_weights)

    def _get_codebook_weights(self):
        return self.codebook_weights

    def _index_add_one_codebook_weight(self, indices: torch.Tensor):
        self.codebook_weights = self.codebook_weights.index_add(
            0,
            indices.flatten(),
            torch.ones_like(self.codebook_weights[indices]),
        )

    def forward(self, latent: torch.Tensor) -> AbstractLatentDistribution:
        if latent.shape[-1] == self.latent_dim:
            return QuantizedLatentDistribution(
                latent,
                self.codebook,
                self._flush_codebook_weights,
                self._get_codebook_weights,
                self._index_add_one_codebook_weight,
            )
        elif latent.shape[-1] == self.num_embeddings:
            return ClassifiedLatentDistribution(
                latent,
                self.codebook,
            )
        else:
            raise ValueError(f"Latent vector has wrong dimension: {latent.shape[-1]}")