Spaces:
Running
Running
File size: 25,266 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
from einops.layers.torch import Rearrange
from einops import rearrange, repeat
import torch
import torch.nn as nn
from risk_biased.models.multi_head_attention import MultiHeadAttention
from risk_biased.models.context_gating import ContextGating
from risk_biased.models.mlp import MLP
class SequenceEncoderMaskedLSTM(nn.Module):
"""MLP followed with a masked LSTM implementation with one layer.
Args:
input_dim : dimension of the input variable
h_dim : dimension of a hidden layer of MLP
"""
def __init__(self, input_dim: int, h_dim: int) -> None:
super().__init__()
self._group_objects = Rearrange("b o ... -> (b o) ...")
self._embed = nn.Linear(in_features=input_dim, out_features=h_dim)
self._lstm = nn.LSTMCell(
input_size=h_dim, hidden_size=h_dim
) # expects(batch,seq,features)
self.h0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
self.c0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
def forward(self, input: torch.Tensor, mask_input: torch.Tensor) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, seq_len, input_dim) tensor
mask_input (torch.Tensor): (batch_size, num_objects, seq_len) bool tensor (True if data is good False if data is missing)
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, seq_len, _ = input.shape
split_objects = Rearrange("(b o) f -> b o f", b=batch_size, o=num_objects)
input = self._group_objects(input)
mask_input = self._group_objects(mask_input)
embedded_input = self._embed(input)
# One to many encoding of the input sequence with masking for missing points
mask_input = mask_input.float()
h = mask_input[:, 0, None] * embedded_input[:, 0, :] + (
1 - mask_input[:, 0, None]
) * repeat(self.h0, "b f -> (size b) f", size=batch_size * num_objects)
c = repeat(self.c0, "b f -> (size b) f", size=batch_size * num_objects)
for i in range(seq_len):
new_input = (
mask_input[:, i, None] * embedded_input[:, i, :]
+ (1 - mask_input[:, i, None]) * h
)
h, c = self._lstm(new_input, (h, c))
return split_objects(h)
class SequenceEncoderLSTM(nn.Module):
"""MLP followed with an LSTM with one layer.
Args:
input_dim : dimension of the input variable
h_dim : dimension of a hidden layer of MLP
"""
def __init__(self, input_dim: int, h_dim: int) -> None:
super().__init__()
self._group_objects = Rearrange("b o ... -> (b o) ...")
self._embed = nn.Linear(in_features=input_dim, out_features=h_dim)
self._lstm = nn.LSTM(
input_size=h_dim,
hidden_size=h_dim,
batch_first=True,
) # expects(batch,seq,features)
self.h0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
self.c0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
def forward(self, input: torch.Tensor, mask_input: torch.Tensor) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, seq_len, input_dim) tensor
mask_input (torch.Tensor): (batch_size, num_objects, seq_len) bool tensor (True if data is good False if data is missing)
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, seq_len, _ = input.shape
split_objects = Rearrange("(b o) f -> b o f", b=batch_size, o=num_objects)
input = self._group_objects(input)
mask_input = self._group_objects(mask_input)
embedded_input = self._embed(input)
# One to many encoding of the input sequence with masking for missing points
mask_input = mask_input.float()
h = (
mask_input[:, 0, None] * embedded_input[:, 0, :]
+ (1 - mask_input[:, 0, None])
* repeat(
self.h0, "one f -> one size f", size=batch_size * num_objects
).contiguous()
)
c = repeat(
self.c0, "one f -> one size f", size=batch_size * num_objects
).contiguous()
_, (h, _) = self._lstm(embedded_input, (h, c))
# for i in range(seq_len):
# new_input = (
# mask_input[:, i, None] * embedded_input[:, i, :]
# + (1 - mask_input[:, i, None]) * h
# )
# h, c = self._lstm(new_input, (h, c))
return split_objects(h.squeeze(0))
class SequenceEncoderMLP(nn.Module):
"""MLP implementation.
Args:
input_dim : dimension of the input variable
h_dim : dimension of a hidden layer of MLP
num_layers: number of layers to use in the MLP
sequence_length: dimension of the input sequence
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
input_dim: int,
h_dim: int,
num_layers: int,
sequence_length: int,
is_mlp_residual: bool,
) -> None:
super().__init__()
self._mlp = MLP(
input_dim * sequence_length, h_dim, h_dim, num_layers, is_mlp_residual
)
def forward(self, input: torch.Tensor, mask_input: torch.Tensor) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, seq_len, input_dim) tensor
mask_input (torch.Tensor): (batch_size, num_objects, seq_len) bool tensor (True if data is good False if data is missing)
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, _, _ = input.shape
input = input * mask_input.unsqueeze(-1)
h = rearrange(input, "b o s f -> (b o) (s f)")
mask_input = rearrange(mask_input, "b o s -> (b o) s")
if h.shape[-1] == 0:
h = h.view(batch_size, 0, h.shape[0])
else:
h = self._mlp(h)
h = rearrange(h, "(b o) f -> b o f", b=batch_size, o=num_objects)
return h
class SequenceDecoderLSTM(nn.Module):
"""A one to many LSTM implementation with one layer.
Args:
h_dim : dimension of a hidden layer
"""
def __init__(self, h_dim: int) -> None:
super().__init__()
self._group_objects = Rearrange("b o f -> (b o) f")
self._lstm = nn.LSTM(input_size=h_dim, hidden_size=h_dim)
self._out_layer = nn.Linear(in_features=h_dim, out_features=h_dim)
self.c0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
def forward(self, input: torch.Tensor, sequence_length: int) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, input_dim) tensor
sequence_length: output sequence length to create
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, _ = input.shape
h = repeat(input, "b o f -> one (b o) f", one=1).contiguous()
c = repeat(
self.c0, "one f -> one size f", size=batch_size * num_objects
).contiguous()
seq_h = repeat(h, "one b f -> (one t) b f", t=sequence_length).contiguous()
h, (_, _) = self._lstm(seq_h, (h, c))
h = rearrange(h, "t (b o) f -> b o t f", b=batch_size, o=num_objects)
return self._out_layer(h)
class SequenceDecoderMLP(nn.Module):
"""A one to many MLP implementation.
Args:
h_dim : dimension of a hidden layer
num_layers: number of layers to use in the MLP
sequence_length: output sequence length to return
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self, h_dim: int, num_layers: int, sequence_length: int, is_mlp_residual: bool
) -> None:
super().__init__()
self._mlp = MLP(
h_dim, h_dim * sequence_length, h_dim, num_layers, is_mlp_residual
)
def forward(self, input: torch.Tensor, sequence_length: int) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, input_dim) tensor
sequence_length: output sequence length to create
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, _ = input.shape
h = rearrange(input, "b o f -> (b o) f")
h = self._mlp(h)
h = rearrange(
h, "(b o) (s f) -> b o s f", b=batch_size, o=num_objects, s=sequence_length
)
return h
class AttentionBlock(nn.Module):
"""Block performing agent-map cross attention->ReLU(linear)->+residual->layer_norm->agent-agent attention->ReLU(linear)->+residual->layer_norm
Args:
hidden_dim: feature dimension
num_attention_heads: number of attention heads to use
"""
def __init__(self, hidden_dim: int, num_attention_heads: int):
super().__init__()
self._num_attention_heads = num_attention_heads
self._agent_map_attention = MultiHeadAttention(
hidden_dim, num_attention_heads, hidden_dim, hidden_dim
)
self._lin1 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm1 = nn.LayerNorm(hidden_dim)
self._agent_agent_attention = MultiHeadAttention(
hidden_dim, num_attention_heads, hidden_dim, hidden_dim
)
self._lin2 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm2 = nn.LayerNorm(hidden_dim)
self._activation = nn.ReLU()
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning only the output (no attention matrix)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
"""
# Check if map_info is available. If not, don't compute cross-attention with it
if mask_map.any():
mask_agent_map = torch.einsum("ba,bo->bao", mask_agents, mask_map)
h, _ = self._agent_map_attention(
encoded_agents + encoded_absolute_agents,
encoded_map,
encoded_map,
mask=mask_agent_map,
)
h = torch.masked_fill(h, torch.logical_not(mask_agents.unsqueeze(-1)), 0)
h = torch.sigmoid(self._lin1(h))
h = self._layer_norm1(encoded_agents + h)
else:
h = self._layer_norm1(encoded_agents)
h_res = h.clone()
agent_agent_mask = torch.einsum("ba,be->bae", mask_agents, mask_agents)
h = h + encoded_absolute_agents
h, _ = self._agent_agent_attention(h, h, h, mask=agent_agent_mask)
h = torch.masked_fill(h, torch.logical_not(mask_agents.unsqueeze(-1)), 0)
h = self._activation(self._lin2(h))
h = self._layer_norm2(h_res + h)
return h
class CG_block(nn.Module):
"""Block performing context gating agent-map
Args:
hidden_dim: feature dimension
dim_expansion: multiplicative factor on the hidden dimension for the global context representation
num_layers: number of layers to use in the MLP for context encoding
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
hidden_dim: int,
dim_expansion: int,
num_layers: int,
is_mlp_residual: bool,
):
super().__init__()
self._agent_map = ContextGating(
hidden_dim,
hidden_dim * dim_expansion,
num_layers=num_layers,
is_mlp_residual=is_mlp_residual,
)
self._lin1 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm1 = nn.LayerNorm(hidden_dim)
self._agent_agent = ContextGating(
hidden_dim, hidden_dim * dim_expansion, num_layers, is_mlp_residual
)
self._lin2 = nn.Linear(hidden_dim, hidden_dim)
self._activation = nn.ReLU()
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
global_context: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning the output and global context
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
global_context: (batch_size, dim_context) tensor representing the global context
"""
# Check if map_info is available. If not, don't compute cross-interaction with it
if mask_map.any():
s, global_context = self._agent_map(
encoded_agents + encoded_absolute_agents, encoded_map, global_context
)
s = s * mask_agents.unsqueeze(-1)
s = self._activation(self._lin1(s))
s = self._layer_norm1(encoded_agents + s)
else:
s = self._layer_norm1(encoded_agents)
s = s + encoded_absolute_agents
s, global_context = self._agent_agent(s, s, global_context)
s = s * mask_agents.unsqueeze(-1)
s = self._lin2(s)
return s, global_context
class HybridBlock(nn.Module):
"""Block performing agent-map cross context_gating->ReLU(linear)->+residual->layer_norm->agent-agent attention->ReLU(linear)->+residual->layer_norm
Args:
hidden_dim: feature dimension
num_attention_heads: number of attention heads to use
dim_expansion: multiplicative factor on the hidden dimension for the global context representation
num_layers: number of layers to use in the MLP for context encoding
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
hidden_dim: int,
num_attention_heads: int,
dim_expansion: int,
num_layers: int,
is_mlp_residual: bool,
):
super().__init__()
self._num_attention_heads = num_attention_heads
self._agent_map_cg = ContextGating(
hidden_dim,
hidden_dim * dim_expansion,
num_layers=num_layers,
is_mlp_residual=is_mlp_residual,
)
self._lin1 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm1 = nn.LayerNorm(hidden_dim)
self._agent_agent_attention = MultiHeadAttention(
hidden_dim, num_attention_heads, hidden_dim, hidden_dim
)
self._lin2 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm2 = nn.LayerNorm(hidden_dim)
self._activation = nn.ReLU()
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
global_context: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning the output and the context (no attention matrix)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
global_context: (batch_size, dim_context) tensor representing the global context
"""
# Check if map_info is available. If not, don't compute cross-context gating with it
if mask_map.any():
# mask_agent_map = torch.logical_not(
# torch.einsum("ba,bo->bao", mask_agents, mask_map)
# )
h, global_context = self._agent_map_cg(
encoded_agents + encoded_absolute_agents, encoded_map, global_context
)
h = torch.masked_fill(h, torch.logical_not(mask_agents.unsqueeze(-1)), 0)
h = self._activation(self._lin1(h))
h = self._layer_norm1(encoded_agents + h)
else:
h = self._layer_norm1(encoded_agents)
h_res = h.clone()
agent_agent_mask = torch.einsum("ba,be->bae", mask_agents, mask_agents)
h = h + encoded_absolute_agents
h, _ = self._agent_agent_attention(h, h, h, mask=agent_agent_mask)
h = torch.masked_fill(h, torch.logical_not(mask_agents.unsqueeze(-1)), 0)
h = self._activation(self._lin2(h))
h = self._layer_norm2(h_res + h)
return h, global_context
class MCG(nn.Module):
"""Multiple context encoding blocks
Args:
hidden_dim: feature dimension
dim_expansion: multiplicative factor on the hidden dimension for the global context representation
num_layers: number of layers to use in the MLP for context encoding
num_blocks: number of successive context encoding blocks to use in the module
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
hidden_dim: int,
dim_expansion: int,
num_layers: int,
num_blocks: int,
is_mlp_residual: bool,
):
super().__init__()
self.initial_global_context = nn.parameter.Parameter(
torch.ones(1, hidden_dim * dim_expansion)
)
list_cg = []
for i in range(num_blocks):
list_cg.append(
CG_block(hidden_dim, dim_expansion, num_layers, is_mlp_residual)
)
self.mcg = nn.ModuleList(list_cg)
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning only the output (no context)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
"""
s = encoded_agents
c = self.initial_global_context
sum_s = s
sum_c = c
for i, cg in enumerate(self.mcg):
s_new, c_new = cg(
s, mask_agents, encoded_absolute_agents, encoded_map, mask_map, c
)
sum_s = sum_s + s_new
sum_c = sum_c + c_new
s = (sum_s / (i + 2)).clone()
c = (sum_c / (i + 2)).clone()
return s
class MAB(nn.Module):
"""Multiple Attention Blocks
Args:
hidden_dim: feature dimension
num_attention_heads: number of attention heads to use
num_blocks: number of successive blocks to use in the module.
"""
def __init__(
self,
hidden_dim: int,
num_attention_heads: int,
num_blocks: int,
):
super().__init__()
list_attention = []
for i in range(num_blocks):
list_attention.append(AttentionBlock(hidden_dim, num_attention_heads))
self.attention_blocks = nn.ModuleList(list_attention)
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning only the output (no attention matrix)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
"""
h = encoded_agents
sum_h = h
for i, attention in enumerate(self.attention_blocks):
h_new = attention(
h, mask_agents, encoded_absolute_agents, encoded_map, mask_map
)
sum_h = sum_h + h_new
h = (sum_h / (i + 2)).clone()
return h
class MHB(nn.Module):
"""Multiple Hybrid Blocks
Args:
hidden_dim: feature dimension
num_attention_heads: number of attention heads to use
dim_expansion: multiplicative factor on the hidden dimension for the global context representation
num_layers: number of layers to use in the MLP for context encoding
num_blocks: number of successive blocks to use in the module.
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
hidden_dim: int,
num_attention_heads: int,
dim_expansion: int,
num_layers: int,
num_blocks: int,
is_mlp_residual: bool,
):
super().__init__()
self.initial_global_context = nn.parameter.Parameter(
torch.ones(1, hidden_dim * dim_expansion)
)
list_hb = []
for i in range(num_blocks):
list_hb.append(
HybridBlock(
hidden_dim,
num_attention_heads,
dim_expansion,
num_layers,
is_mlp_residual,
)
)
self.hybrid_blocks = nn.ModuleList(list_hb)
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning only the output (no attention matrix nor context)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
"""
sum_h = encoded_agents
sum_c = self.initial_global_context
h = encoded_agents
c = self.initial_global_context
for i, hb in enumerate(self.hybrid_blocks):
h_new, c_new = hb(
h, mask_agents, encoded_absolute_agents, encoded_map, mask_map, c
)
sum_h = sum_h + h_new
sum_c = sum_c + c_new
h = (sum_h / (i + 2)).clone()
c = (sum_c / (i + 2)).clone()
return h
|