File size: 9,476 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
from typing import Optional

from matplotlib.axes import Axes
from matplotlib.collections import PatchCollection
from matplotlib.lines import Line2D
from matplotlib.patches import Rectangle, Ellipse
import matplotlib
import matplotlib.pyplot as plt
import numpy as np

from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams


class ScenePlotter:
    """
    This class defines plotting functions that takes in a scene and an optional axes to plot road agents and trajectories.

    Args:
        scene: The scene to use for plotting
        ax: Matplotlib axes in which the drawing is made
    """

    def __init__(self, scene: RandomScene, ax: Optional[Axes] = None) -> None:
        self.scene = scene
        if ax is None:
            self.ax = plt.subplot()
        else:
            self.ax = ax
        self._sidewalks_boxes = PatchCollection(
            [
                Rectangle(
                    xy=[-scene.ego_length, scene.bottom],
                    height=scene.sidewalks_width,
                    width=scene.road_length + scene.ego_length,
                ),
                Rectangle(
                    xy=[-scene.ego_length, 3 * scene.lane_width / 2],
                    height=scene.sidewalks_width,
                    width=scene.road_length + scene.ego_length,
                ),
            ],
            facecolor="gray",
            alpha=0.3,
            edgecolor="black",
        )
        self._center_line = Line2D(
            [-scene.ego_length / 2, scene.road_length],
            [scene.lane_width / 2, scene.lane_width / 2],
            linewidth=4,
            color="black",
            dashes=[10, 5],
        )

        self._set_agent_patches()
        self._set_agent_paths()
        self.ax.set_aspect("equal")

    def _set_current_time(self, time: float):
        """
        Set the current time to draw the agents at the proper time along the trajectory.

        Args:
            time: the present time in second
        """
        self.scene.set_current_time(time)
        self._set_agent_patches()

    def _set_agent_paths(self):
        """
        Defines path as lines.
        """
        self._ego_path = Line2D(
            [0, self.scene.ego_ref_speed * self.scene.time_scene],
            [0, 0],
            linewidth=2,
            color="red",
            dashes=[4, 4],
            alpha=0.3,
        )

        self._pedestrian_path = [
            [
                Line2D(
                    [init[agent, 0], final[agent, 0]],
                    [init[agent, 1], final[agent, 1]],
                    linewidth=2,
                    dashes=[4, 4],
                    alpha=0.3,
                )
                for (init, final) in zip(
                    self.scene.pedestrians_positions,
                    self.scene.final_pedestrians_positions,
                )
            ]
            for agent in range(self.scene.pedestrians_positions.shape[1])
        ]

    def _set_agent_patches(self):
        """
        Set the agent patches at their current position in the scene.
        """
        current_step = int(round(self.scene.current_time / self.scene.dt))
        self._ego_box = Rectangle(
            xy=(
                -self.scene.ego_length / 2
                + self.scene.ego_ref_speed * self.scene.current_time,
                -self.scene.ego_width / 2,
            ),
            height=self.scene.ego_width,
            width=self.scene.ego_length,
            fill=True,
            facecolor="red",
            alpha=0.4,
            edgecolor="black",
        )
        self._pedestrian_patches = [
            [
                Ellipse(
                    xy=xy,
                    width=1,
                    height=0.5,
                    angle=angle * 180 / np.pi + 90,
                    facecolor="blue",
                    alpha=0.4,
                    edgecolor="black",
                )
                for xy, angle in zip(
                    self.scene.pedestrians_trajectories[:, agent, current_step],
                    self.scene.pedestrians.angle[:, agent],
                )
            ]
            for agent in range(self.scene.pedestrians_trajectories.shape[1])
        ]

    def plot_road(self) -> None:
        """
        Plot the road as a two lanes, two sidewalks in straight lines with the ego vehicle. Plot is made in given ax.
        """
        self.ax.add_collection(self._sidewalks_boxes)
        self.ax.add_patch(self._ego_box)
        self.ax.add_line(self._center_line)
        self.ax.add_line(self._ego_path)
        self.rescale()

    def draw_scene(self, index: int, time=None, prediction=None) -> None:
        """
        Plot the scene of given index (road, ego vehicle with its path, pedestrian with its path)
        Args:
            index: index of the pedestrian in the batch
            time: set current time to this value if not None
            prediction: draw this instead of the actual future if not None
        """
        if time is not None:
            self._set_current_time(time)
        self.plot_road()
        for agent_patch in self._pedestrian_patches:
            self.ax.add_patch(agent_patch[index])
        for agent_patch in self._pedestrian_path:
            self.ax.add_line(agent_patch[index])
        if prediction is not None:
            self.draw_trajectory(prediction)

    def rescale(self):
        """
        Set the x and y limits to the road shape with a margin.
        """
        self.ax.set_xlim(
            left=-2 * self.scene.ego_length,
            right=self.scene.road_length + self.scene.ego_length,
        )
        self.ax.set_ylim(
            bottom=self.scene.bottom - self.scene.lane_width,
            top=2 * self.scene.lane_width + 2 * self.scene.sidewalks_width,
        )

    def draw_trajectory(self, prediction, color="b") -> None:
        """
        Plot the given prediction in the scene.
        """
        self.ax.scatter(prediction[..., 0], prediction[..., 1], color=color, alpha=0.3)

    def draw_all_trajectories(
        self,
        prediction: np.ndarray,
        color=None,
        color_value: np.ndarray = None,
        alpha: float = 0.05,
        label: str = "trajectory",
    ) -> None:
        """
        Plot all the given predictions in the scene
        Args:
            prediction : (batch, n_agents, time, 2) batch of trajectories
            color: regular color name
            color_value : (batch) Optional batch of values for coloring from green to red
        """

        if color_value is not None:
            min = color_value.min()
            max = color_value.max()
            color_value = 0.9 * (color_value - min) / (max - min)
            for agent in range(prediction.shape[1]):
                for traj, val in zip(prediction[:, agent], color_value[:, agent]):
                    color = (val, 1 - val, 0.1)
                    self.ax.plot(
                        traj[:, 0], traj[:, 1], color=color, alpha=alpha, label=label
                    )
                    self.ax.scatter(traj[-1, 0], traj[-1, 1], color=color, alpha=alpha)
            cmap = matplotlib.colors.ListedColormap(
                np.linspace(
                    [color_value.min(), 1 - color_value.min(), 0.1],
                    [color_value.max(), 1 - color_value.max(), 0.1],
                    128,
                )
            )
            norm = matplotlib.colors.Normalize(vmin=min, vmax=max, clip=True)
            sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
            plt.colorbar(sm, label="TTC cost")
        else:
            for agent in range(prediction.shape[1]):
                for traj in prediction:
                    self.ax.plot(
                        traj[agent, :, 0],
                        traj[agent, :, 1],
                        color=color,
                        alpha=alpha,
                        label=label,
                    )
                self.ax.scatter(
                    prediction[:, agent, -1, 0],
                    prediction[:, agent, -1, 1],
                    color=color,
                    alpha=alpha,
                )

    def draw_legend(self):
        """Draw legend without repeats and without transparency."""

        handles, labels = self.ax.get_legend_handles_labels()
        i = np.arange(len(labels))
        filter = np.array([])
        unique_labels = list(set(labels))
        for ul in unique_labels:
            filter = np.append(filter, [i[np.array(labels) == ul][0]])
        filtered_handles = []
        for f in filter:
            handles[int(f)].set_alpha(1)
            filtered_handles.append(handles[int(f)])
        filtered_labels = [labels[int(f)] for f in filter]
        self.ax.legend(filtered_handles, filtered_labels)


# Draw a random scene
if __name__ == "__main__":
    from risk_biased.utils.config_argparse import config_argparse

    working_dir = os.path.dirname(os.path.realpath(__file__))
    config_path = os.path.join(
        working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
    )
    config = config_argparse(config_path)
    n_samples = 100

    scene_params = RandomSceneParams.from_config(config)
    scene_params.batch_size = n_samples
    scene = RandomScene(
        scene_params,
        is_torch=False,
    )

    plotter = ScenePlotter(scene)

    plotter.draw_scene(0, time=1)
    plt.tight_layout()
    plt.show()