Spaces:
Running
Running
File size: 17,947 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
from dataclasses import dataclass
from typing import Any, Callable, Optional, Tuple
from mmcv import Config
import numpy as np
import torch
from torch import Tensor
def masked_min_torch(x, mask=None, dim=None):
if mask is not None:
x = torch.masked_fill(x, torch.logical_not(mask), float("inf"))
if dim is None:
return torch.min(x)
else:
return torch.min(x, dim=dim)[0]
def masked_max_torch(x, mask=None, dim=None):
if mask is not None:
x = torch.masked_fill(x, torch.logical_not(mask), float("-inf"))
if dim is None:
return torch.max(x)
else:
return torch.max(x, dim=dim)[0]
def get_masked_discounted_mean_torch(discount_factor=0.95):
def masked_discounted_mean_torch(x, mask=None, dim=None):
discount_tensor = torch.full(x.shape, discount_factor, device=x.device)
discount_tensor = torch.cumprod(discount_tensor, dim=-2)
if mask is not None:
x = torch.masked_fill(x, torch.logical_not(mask), 0)
if dim is None:
assert mask.any()
return (x * discount_tensor).sum() / (mask * discount_tensor).sum()
else:
return (x * discount_tensor).sum(dim) / (mask * discount_tensor).sum(
dim
).clamp_min(1)
else:
if dim is None:
return (x * discount_tensor).sum() / discount_tensor.sum()
else:
return (x * discount_tensor).sum(dim) / discount_tensor.sum(dim)
return masked_discounted_mean_torch
def masked_mean_torch(x, mask=None, dim=None):
if mask is not None:
x = torch.masked_fill(x, torch.logical_not(mask), 0)
if dim is None:
assert mask.any()
return x.sum() / mask.sum()
else:
return x.sum(dim) / mask.sum(dim).clamp_min(1)
else:
if dim is None:
return x.mean()
else:
return x.mean(dim)
def get_discounted_mean_np(discount_factor=0.95):
def discounted_mean_np(x, axis=None):
discount_tensor = np.full(x.shape, discount_factor)
discount_tensor = np.cumprod(discount_tensor, axis=-2)
if axis is None:
return (x * discount_tensor).sum() / discount_tensor.sum()
else:
return (x * discount_tensor).sum(axis) / discount_tensor.sum(axis)
return discounted_mean_np
def get_masked_reduce_np(reduce_function):
def masked_reduce_np(x, mask=None, axis=None):
if mask is not None:
x = np.ma.array(x, mask=np.logical_not(mask))
return reduce_function(x, axis=axis)
else:
return reduce_function(x, axis=axis)
return masked_reduce_np
@dataclass
class CostParams:
scale: float
reduce: str
discount_factor: float
@staticmethod
def from_config(cfg: Config):
return CostParams(
scale=cfg.cost_scale,
reduce=cfg.cost_reduce,
discount_factor=cfg.discount_factor,
)
class BaseCostTorch:
"""Base cost class defining reduce strategy and basic parameters.
Its __call__ definition is only a dummy example returning zeros, this class is intended to be
inherited from and __call__ redefined with an actual cost between the inputs.
"""
def __init__(self, params: CostParams) -> None:
super().__init__()
self._reduce_fun = params.reduce
self.scale = params.scale
reduce_fun_torch_dict = {
"min": masked_min_torch,
"max": masked_max_torch,
"mean": masked_mean_torch,
"discounted_mean": get_masked_discounted_mean_torch(params.discount_factor),
"now": lambda *args, **kwargs: args[0][..., 0],
"final": lambda *args, **kwargs: args[0][..., -1],
}
self._reduce_fun = reduce_fun_torch_dict[params.reduce]
@property
def distance_bandwidth(self):
return 1
@property
def time_bandwidth(self):
return 1
def __call__(
self,
x1: Tensor,
x2: Tensor,
v1: Tensor,
v2: Tensor,
mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Any]:
"""Compute the cost from given positions x1, x2 and velocities v1, v2
The base cost only returns 0 cost, use costs that inherit from this to compute an actual cost.
Args:
x1 (some shape, num_steps, 2): positions of the first agent
x2 (some shape, num_steps, 2): positions of the second agent
v1 (some shape, num_steps, 2): velocities of the first agent
v2 (some shape, num_steps, 2): velocities of the second agent
mask (some_shape, num_steps, 2): mask set to True where the cost should be computed
Returns:
(some_shape) cost for the compared states of agent 1 and agent 2, as well as any
supplementary cost-related information
"""
return (
self._reduce_fun(torch.zeros_like(x2[..., 0]), mask, dim=-1),
None,
)
class BaseCostNumpy:
"""Base cost class defining reduce strategy and basic parameters.
Its __call__ definition is only a dummy example returning zeros, this class is intended to be
inherited from and __call__ redefined with an actual cost between the inputs.
"""
def __init__(self, params: CostParams) -> None:
super().__init__()
self._reduce_fun = params.reduce
self.scale = params.scale
reduce_fun_np_dict = {
"min": get_masked_reduce_np(np.min),
"max": get_masked_reduce_np(np.max),
"mean": get_masked_reduce_np(np.mean),
"discounted_mean": get_masked_reduce_np(
get_discounted_mean_np(params.discount_factor)
),
"now": get_masked_reduce_np(lambda *args, **kwargs: args[0][..., 0]),
"final": get_masked_reduce_np(lambda *args, **kwargs: args[0][..., -1]),
}
self._reduce_fun = reduce_fun_np_dict[params.reduce]
@property
def distance_bandwidth(self):
return 1
@property
def time_bandwidth(self):
return 1
def __call__(
self,
x1: np.ndarray,
x2: np.ndarray,
v1: np.ndarray,
v2: np.ndarray,
mask: Optional[np.ndarray] = None,
) -> Tuple[np.ndarray, Any]:
"""Compute the cost from given positions x1, x2 and velocities v1, v2
The base cost only returns 0 cost, use costs that inherit from this to compute an actual cost.
Args:
x1 (some shape, num_steps, 2): positions of the first agent
x2 (some shape, num_steps, 2): positions of the second agent
v1 (some shape, num_steps, 2): velocities of the first agent
v2 (some shape, num_steps, 2): velocities of the second agent
mask (some_shape, num_steps, 2): mask set to True where the cost should be computed
Returns:
(some_shape) cost for the compared states of agent 1 and agent 2, as well as any
supplementary cost-related information
"""
return (
self._reduce_fun(np.zeros_like(x2[..., 0]), mask, axis=-1),
None,
)
@dataclass
class DistanceCostParams(CostParams):
bandwidth: float
@staticmethod
def from_config(cfg: Config):
return DistanceCostParams(
scale=cfg.cost_scale,
reduce=cfg.cost_reduce,
bandwidth=cfg.distance_bandwidth,
discount_factor=cfg.discount_factor,
)
class DistanceCostTorch(BaseCostTorch):
def __init__(self, params: DistanceCostParams) -> None:
super().__init__(params)
self._bandwidth = params.bandwidth
@property
def distance_bandwidth(self):
return self._bandwidth
def __call__(
self, x1: Tensor, x2: Tensor, *args, mask: Optional[Tensor] = None, **kwargs
) -> Tuple[Tensor, Tensor]:
"""
Returns a cost estimation based on distance. Also returns distances between ego and pedestrians.
Args:
x1: First agent trajectory
x2: Second agent trajectory
mask: True where cost should be computed
Returns:
cost, distance_to_collision
"""
dist = torch.square(x2 - x1).sum(-1)
if mask is not None:
dist = torch.masked_fill(dist, torch.logical_not(mask), 1e9)
cost = torch.exp(-dist / (2 * self._bandwidth))
return self.scale * self._reduce_fun(cost, mask=mask, dim=-1), dist
class DistanceCostNumpy(BaseCostNumpy):
def __init__(self, params: DistanceCostParams) -> None:
super().__init__(params)
self._bandwidth = params.bandwidth
@property
def distance_bandwidth(self):
return self._bandwidth
def __call__(
self,
x1: np.ndarray,
x2: np.ndarray,
*args,
mask: Optional[np.ndarray] = None,
**kwargs
) -> Tuple[np.ndarray, np.ndarray]:
"""
Returns a cost estimation based on distance. Also returns distances between ego and pedestrians.
Args:
x1: First agent trajectory
x2: Second agent trajectory
mask: True where cost should be computed
Returns:
cost, distance_to_collision
"""
dist = np.square(x2 - x1).sum(-1)
if mask is not None:
dist = np.where(mask, dist, 1e9)
cost = np.exp(-dist / (2 * self._bandwidth))
return self.scale * self._reduce_fun(cost, mask=mask, axis=-1), dist
@dataclass
class TTCCostParams(CostParams):
distance_bandwidth: float
time_bandwidth: float
min_velocity_diff: float
@staticmethod
def from_config(cfg: Config):
return TTCCostParams(
scale=cfg.cost_scale,
reduce=cfg.cost_reduce,
distance_bandwidth=cfg.distance_bandwidth,
time_bandwidth=cfg.time_bandwidth,
min_velocity_diff=cfg.min_velocity_diff,
discount_factor=cfg.discount_factor,
)
class TTCCostTorch(BaseCostTorch):
def __init__(self, params: TTCCostParams) -> None:
super().__init__(params)
self._d_bw = params.distance_bandwidth
self._t_bw = params.time_bandwidth
self._min_v = params.min_velocity_diff
@property
def distance_bandwidth(self):
return self._d_bw
@property
def time_bandwidth(self):
return self._t_bw
def __call__(
self,
x1: Tensor,
x2: Tensor,
v1: Tensor,
v2: Tensor,
*args,
mask: Optional[Tensor] = None,
**kwargs
) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
"""
Returns a cost estimation based on time to collision and distance to collision.
Also returns the estimated time to collision, and the imaginary part of the time to collision.
Args:
x1: (some_shape, sequence_length, feature_shape) Initial position of the first agent
x2: (some_shape, sequence_length, feature_shape) Initial position of the second agent
v1: (some_shape, sequence_length, feature_shape) Velocity of the first agent
v2: (some_shape, sequence_length, feature_shape) Velocity of the second agent
mask: (some_shape, sequence_length) True where cost should be computed
Returns:
cost, (time_to_collision, distance_to_collision)
"""
pos_diff = x1 - x2
velocity_diff = v1 - v2
dx = pos_diff[..., 0]
dy = pos_diff[..., 1]
vx = velocity_diff[..., 0]
vy = velocity_diff[..., 1]
speed_diff = (
torch.square(velocity_diff).sum(-1).clamp(self._min_v * self._min_v, None)
)
TTC = -(dx * vx + dy * vy) / speed_diff
distance_TTC = torch.where(
TTC < 0,
torch.sqrt(dx * dx + dy * dy),
torch.abs(vy * dx - vx * dy) / torch.sqrt(speed_diff),
)
TTC = torch.relu(TTC)
if mask is not None:
TTC = torch.masked_fill(TTC, torch.logical_not(mask), 1e9)
distance_TTC = torch.masked_fill(distance_TTC, torch.logical_not(mask), 1e9)
cost = self.scale * self._reduce_fun(
torch.exp(
-torch.square(TTC) / (2 * self._t_bw)
- torch.square(distance_TTC) / (2 * self._d_bw)
),
mask=mask,
dim=-1,
)
return cost, (TTC, distance_TTC)
class TTCCostNumpy(BaseCostNumpy):
def __init__(self, params: TTCCostParams) -> None:
super().__init__(params)
self._d_bw = params.distance_bandwidth
self._t_bw = params.time_bandwidth
self._min_v = params.min_velocity_diff
@property
def distance_bandwidth(self):
return self._d_bw
@property
def time_bandwidth(self):
return self._t_bw
def __call__(
self,
x1: np.ndarray,
x2: np.ndarray,
v1: np.ndarray,
v2: np.ndarray,
*args,
mask: Optional[np.ndarray] = None,
**kwargs
) -> Tuple[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
"""
Returns a cost estimation based on time to collision and distance to collision.
Also returns the estimated time to collision, and the imaginary part of the time to collision.
Args:
x1: (some_shape, sequence_length, feature_shape) Initial position of the first agent
x2: (some_shape, sequence_length, feature_shape) Initial position of the second agent
v1: (some_shape, sequence_length, feature_shape) Velocity of the first agent
v2: (some_shape, sequence_length, feature_shape) Velocity of the second agent
mask: (some_shape, sequence_length) True where cost should be computed
Returns:
cost, (time_to_collision, distance_to_collision)
"""
pos_diff = x1 - x2
velocity_diff = v1 - v2
dx = pos_diff[..., 0]
dy = pos_diff[..., 1]
vx = velocity_diff[..., 0]
vy = velocity_diff[..., 1]
speed_diff = np.maximum(
np.square(velocity_diff).sum(-1), self._min_v * self._min_v
)
TTC = -(dx * vx + dy * vy) / speed_diff
distance_TTC = np.where(
TTC < 0,
np.sqrt(dx * dx + dy * dy),
np.abs(vy * dx - vx * dy) / np.sqrt(speed_diff),
)
TTC = np.where(
TTC < 0,
0,
TTC,
)
if mask is not None:
TTC = np.where(mask, TTC, 1e9)
distance_TTC = np.where(mask, TTC, 1e9)
cost = self.scale * self._reduce_fun(
np.exp(
-np.square(TTC) / (2 * self._t_bw)
- np.square(distance_TTC) / (2 * self._d_bw)
),
mask=mask,
axis=-1,
)
return cost, (TTC, distance_TTC)
def compute_v_from_x(x: Tensor, y: Tensor, dt: float):
"""
Computes the velocity from the position and the time difference.
Args:
x: (some_shape, past_time_sequence, features) Past positions of the agents
y: (some_shape, future_time_sequence, features) Future positions of the agents
dt: Time difference
Returns:
v: (some_shape, future_time_sequence, features) Velocity of the agents
"""
v = (y[..., 1:, :2] - y[..., :-1, :2]) / dt
v_0 = (y[..., 0:1, :2] - x[..., -1:, :2]) / dt
v = torch.cat((v_0, v), -2)
return v
def get_cost(
cost_function: BaseCostTorch,
x: torch.Tensor,
y_samples: torch.Tensor,
offset: torch.Tensor,
x_ego: torch.Tensor,
y_ego: torch.Tensor,
dt: float,
unnormalizer: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Compute cost samples from predicted future trajectories
Args:
cost_function: Cost function to use
x: (batch_size, n_agents, num_steps, state_dim) normalized tensor of history
y_samples: (batch_size, n_agents, n_samples, num_steps_future, state_dim) normalized tensor of predicted
future trajectory samples
offset: (batch_size, n_agents, state_dim) offset position from ego
x_ego: (batch_size, 1, num_steps, state_dim) tensor of ego history
y_ego: (batch_size, 1, num_steps_future, state_dim) tensor of ego future trajectory
dt: time step in trajectories
unnormalizer: function that takes in a trajectory and an offset and that outputs the
unnormalized trajectory
mask: tensor indicating where to compute the cost
Returns:
torch.Tensor: (batch_size, n_agents, n_samples) cost tensor
"""
x = unnormalizer(x, offset)
y_samples = unnormalizer(y_samples, offset)
if offset.shape[1] > 1:
x_ego = unnormalizer(x_ego, offset[:, 0:1])
y_ego = unnormalizer(y_ego, offset[:, 0:1])
min_dim = min(x.shape[-1], y_samples.shape[-1])
x = x[..., :min_dim]
y_samples = y_samples[..., :min_dim]
x_ego = x_ego[..., :min_dim]
y_ego = y_ego[..., :min_dim]
assert x_ego.ndim == y_ego.ndim
if y_samples.shape[-1] < 5:
v_samples = compute_v_from_x(x.unsqueeze(-3), y_samples, dt)
else:
v_samples = y_samples[..., 3:5]
if y_ego.shape[-1] < 5:
v_ego = compute_v_from_x(x_ego, y_ego, dt)
else:
v_ego = y_ego[..., 3:5]
if mask is not None:
mask = torch.cat(
(mask[..., 0:1], torch.logical_and(mask[..., 1:], mask[..., :-1])), -1
)
cost, _ = cost_function(
x1=y_ego.unsqueeze(-3),
x2=y_samples,
v1=v_ego.unsqueeze(-3),
v2=v_samples,
mask=mask,
)
return cost
|