File size: 4,441 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import pytest

import torch
from mmcv import Config

from risk_biased.models.cvae_decoder import (
    CVAEAccelerationDecoder,
    DecoderNN,
)
from risk_biased.models.cvae_params import CVAEParams


@pytest.fixture(scope="module")
def params():
    torch.manual_seed(0)
    working_dir = os.path.dirname(os.path.realpath(__file__))
    config_path = os.path.join(
        working_dir, "..", "..", "..", "risk_biased", "config", "learning_config.py"
    )
    waymo_config_path = os.path.join(
        working_dir, "..", "..", "..", "risk_biased", "config", "waymo_config.py"
    )
    paths = [config_path, waymo_config_path]
    if isinstance(paths, str):
        cfg = Config.fromfile(paths)
    else:
        cfg = Config.fromfile(paths[0])
        for path in paths[1:]:
            c = Config.fromfile(path)
            cfg.update(c)
    cfg.batch_size = 4
    cfg.state_dim = 5
    cfg.map_state_dim = 2
    cfg.num_steps = 3
    cfg.num_steps_future = 4
    cfg.latent_dim = 2
    cfg.hidden_dim = 64
    cfg.num_hidden_layers = 2
    cfg.num_attention_heads = 4
    cfg.device = "cpu"
    return cfg


@pytest.mark.parametrize(
    "num_agents, num_objects, n_samples, type",
    [
        (2, 3, 0, "MLP"),
        (3, 1, 2, "LSTM"),
        (4, 2, 2, "maskedLSTM"),
    ],
)
def test_interaction_decoder_nn(
    params, num_agents: int, num_objects: int, n_samples: int, type: str
):
    params.sequence_decoder_type = type
    model = DecoderNN(
        CVAEParams.from_config(params),
    )

    squeeze_sample_dim = n_samples <= 0
    n_samples = max(1, n_samples)
    x = torch.rand(params.batch_size, num_agents, params.num_steps, params.state_dim)
    mask_x = torch.rand(params.batch_size, num_agents, params.num_steps) > 0.3
    mask_z = mask_x.any(-1)
    z_samples = torch.rand(params.batch_size, num_agents, n_samples, params.latent_dim)
    encoded_map = torch.rand(params.batch_size, num_objects, params.hidden_dim)
    mask_map = torch.rand(params.batch_size, num_objects)
    encoded_absolute = torch.rand(params.batch_size, num_agents, params.hidden_dim)

    if squeeze_sample_dim:
        z_samples = z_samples.squeeze(2)

    output = model(
        z_samples, mask_z, x, mask_x, encoded_absolute, encoded_map, mask_map
    )

    # check shape
    if squeeze_sample_dim:
        assert output.shape == (
            params.batch_size,
            num_agents,
            params.num_steps_future,
            params.hidden_dim,
        )
    else:
        assert output.shape == (
            params.batch_size,
            num_agents,
            n_samples,
            params.num_steps_future,
            params.hidden_dim,
        )


@pytest.mark.parametrize(
    "num_agents, num_objects, n_samples, type",
    [
        (2, 3, 0, "MLP"),
        (3, 1, 2, "LSTM"),
        (4, 2, 2, "maskedLSTM"),
    ],
)
def test_interaction_cvae_decoder(
    params, num_agents: int, num_objects: int, n_samples: int, type: str
):
    params.sequence_decoder_type = type
    squeeze_sample_dim = n_samples <= 0
    n_samples = max(1, n_samples)
    z_samples = torch.rand(params.batch_size, num_agents, n_samples, params.latent_dim)
    if squeeze_sample_dim == 1:
        z_samples = z_samples.squeeze(2)
    x = torch.rand(params.batch_size, num_agents, params.num_steps, params.state_dim)
    offset = torch.rand(params.batch_size, num_agents, 5)
    mask_x = torch.rand(params.batch_size, num_agents, params.num_steps) > 0.3
    mask_z = mask_x.any(-1)
    encoded_map = torch.rand(params.batch_size, num_objects, params.hidden_dim)
    mask_map = torch.rand(params.batch_size, num_objects)
    encoded_absolute = torch.rand(params.batch_size, num_agents, params.hidden_dim)

    model = DecoderNN(CVAEParams.from_config(params))
    decoder = CVAEAccelerationDecoder(model)
    # check auxiliary_input_dim
    y_samples = decoder(
        z_samples,
        mask_z,
        x,
        mask_x,
        encoded_absolute,
        encoded_map,
        mask_map,
        offset=offset,
    )
    # check shape
    if squeeze_sample_dim:
        assert y_samples.shape == (
            params.batch_size,
            num_agents,
            params.num_steps_future,
            params.state_dim,
        )
    else:
        assert y_samples.shape == (
            params.batch_size,
            num_agents,
            n_samples,
            params.num_steps_future,
            params.state_dim,
        )