Spaces:
Running
Running
File size: 4,441 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
import pytest
import torch
from mmcv import Config
from risk_biased.models.cvae_decoder import (
CVAEAccelerationDecoder,
DecoderNN,
)
from risk_biased.models.cvae_params import CVAEParams
@pytest.fixture(scope="module")
def params():
torch.manual_seed(0)
working_dir = os.path.dirname(os.path.realpath(__file__))
config_path = os.path.join(
working_dir, "..", "..", "..", "risk_biased", "config", "learning_config.py"
)
waymo_config_path = os.path.join(
working_dir, "..", "..", "..", "risk_biased", "config", "waymo_config.py"
)
paths = [config_path, waymo_config_path]
if isinstance(paths, str):
cfg = Config.fromfile(paths)
else:
cfg = Config.fromfile(paths[0])
for path in paths[1:]:
c = Config.fromfile(path)
cfg.update(c)
cfg.batch_size = 4
cfg.state_dim = 5
cfg.map_state_dim = 2
cfg.num_steps = 3
cfg.num_steps_future = 4
cfg.latent_dim = 2
cfg.hidden_dim = 64
cfg.num_hidden_layers = 2
cfg.num_attention_heads = 4
cfg.device = "cpu"
return cfg
@pytest.mark.parametrize(
"num_agents, num_objects, n_samples, type",
[
(2, 3, 0, "MLP"),
(3, 1, 2, "LSTM"),
(4, 2, 2, "maskedLSTM"),
],
)
def test_interaction_decoder_nn(
params, num_agents: int, num_objects: int, n_samples: int, type: str
):
params.sequence_decoder_type = type
model = DecoderNN(
CVAEParams.from_config(params),
)
squeeze_sample_dim = n_samples <= 0
n_samples = max(1, n_samples)
x = torch.rand(params.batch_size, num_agents, params.num_steps, params.state_dim)
mask_x = torch.rand(params.batch_size, num_agents, params.num_steps) > 0.3
mask_z = mask_x.any(-1)
z_samples = torch.rand(params.batch_size, num_agents, n_samples, params.latent_dim)
encoded_map = torch.rand(params.batch_size, num_objects, params.hidden_dim)
mask_map = torch.rand(params.batch_size, num_objects)
encoded_absolute = torch.rand(params.batch_size, num_agents, params.hidden_dim)
if squeeze_sample_dim:
z_samples = z_samples.squeeze(2)
output = model(
z_samples, mask_z, x, mask_x, encoded_absolute, encoded_map, mask_map
)
# check shape
if squeeze_sample_dim:
assert output.shape == (
params.batch_size,
num_agents,
params.num_steps_future,
params.hidden_dim,
)
else:
assert output.shape == (
params.batch_size,
num_agents,
n_samples,
params.num_steps_future,
params.hidden_dim,
)
@pytest.mark.parametrize(
"num_agents, num_objects, n_samples, type",
[
(2, 3, 0, "MLP"),
(3, 1, 2, "LSTM"),
(4, 2, 2, "maskedLSTM"),
],
)
def test_interaction_cvae_decoder(
params, num_agents: int, num_objects: int, n_samples: int, type: str
):
params.sequence_decoder_type = type
squeeze_sample_dim = n_samples <= 0
n_samples = max(1, n_samples)
z_samples = torch.rand(params.batch_size, num_agents, n_samples, params.latent_dim)
if squeeze_sample_dim == 1:
z_samples = z_samples.squeeze(2)
x = torch.rand(params.batch_size, num_agents, params.num_steps, params.state_dim)
offset = torch.rand(params.batch_size, num_agents, 5)
mask_x = torch.rand(params.batch_size, num_agents, params.num_steps) > 0.3
mask_z = mask_x.any(-1)
encoded_map = torch.rand(params.batch_size, num_objects, params.hidden_dim)
mask_map = torch.rand(params.batch_size, num_objects)
encoded_absolute = torch.rand(params.batch_size, num_agents, params.hidden_dim)
model = DecoderNN(CVAEParams.from_config(params))
decoder = CVAEAccelerationDecoder(model)
# check auxiliary_input_dim
y_samples = decoder(
z_samples,
mask_z,
x,
mask_x,
encoded_absolute,
encoded_map,
mask_map,
offset=offset,
)
# check shape
if squeeze_sample_dim:
assert y_samples.shape == (
params.batch_size,
num_agents,
params.num_steps_future,
params.state_dim,
)
else:
assert y_samples.shape == (
params.batch_size,
num_agents,
n_samples,
params.num_steps_future,
params.state_dim,
)
|