Spaces:
Running
Running
import math | |
import os | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from pytorch_lightning.utilities.seed import seed_everything | |
import torch | |
from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams | |
from risk_biased.utils.cost import ( | |
DistanceCostNumpy, | |
DistanceCostParams, | |
TTCCostNumpy, | |
TTCCostParams, | |
) | |
from risk_biased.utils.load_model import load_from_config | |
from risk_biased.utils.risk import get_risk_level_sampler | |
from risk_biased.utils.config_argparse import config_argparse | |
if __name__ == "__main__": | |
working_dir = os.path.dirname(os.path.realpath(__file__)) | |
config_path = os.path.join( | |
working_dir, "..", "..", "risk_biased", "config", "learning_config.py" | |
) | |
config = config_argparse(config_path) | |
model, loaders, config = load_from_config(config) | |
if config.seed is not None: | |
seed_everything(config.seed) | |
risk_sampler = get_risk_level_sampler(config.risk_distribution) | |
is_torch = False | |
n_scenes = 1000 | |
sample_every = 10 | |
# Get a batch of random pedestrians | |
scene_params = RandomSceneParams.from_config(config) | |
scene_params.batch_size = n_scenes | |
scene = RandomScene( | |
scene_params, | |
is_torch=is_torch, | |
) | |
dist_cost_func = DistanceCostNumpy(DistanceCostParams.from_config(config)) | |
ttc_cost_func = TTCCostNumpy(TTCCostParams.from_config(config)) | |
len_traj = int(config.time_scene / scene.dt) | |
ped_trajs = scene.get_pedestrians_trajectories() | |
ped_trajs_past = ped_trajs[:, :, : config.num_steps] | |
batch_size = ped_trajs.shape[0] | |
ego_traj = scene.get_ego_ref_trajectory(config.sample_times).repeat( | |
batch_size, axis=0 | |
) | |
normalized_trajs, offset = loaders.normalize_trajectory( | |
torch.from_numpy(ped_trajs.astype("float32")).contiguous() | |
) | |
x = normalized_trajs[:, :, : config.num_steps] | |
ego_history = ( | |
torch.from_numpy(ego_traj[:, :, : config.num_steps].astype("float32")) | |
.expand_as(x) | |
.contiguous() | |
) | |
ego_future = ( | |
torch.from_numpy(ego_traj[:, :, -config.num_steps_future :].astype("float32")) | |
.expand(x.shape[0], x.shape[1], -1, -1) | |
.contiguous() | |
) | |
mask_x = torch.ones_like(x[..., 0]) | |
map = torch.empty(ego_history.shape[0], 0, 0, 2, device=mask_x.device) | |
mask_map = torch.empty(ego_history.shape[0], 0, 0, device=mask_x.device) | |
pred_riskier = ( | |
model.predict_step( | |
(x, mask_x, map, mask_map, offset, ego_history, ego_future), | |
0, | |
risk_level=risk_sampler.get_highest_risk( | |
batch_size=n_scenes, device="cpu" | |
).unsqueeze(1), | |
) | |
.cpu() | |
.detach() | |
.numpy() | |
) | |
pred = ( | |
model.predict_step( | |
(x, mask_x, map, mask_map, offset, ego_history, ego_future), | |
0, | |
risk_level=None, | |
) | |
.cpu() | |
.detach() | |
.numpy() | |
) | |
ped_trajs_pred = np.concatenate((ped_trajs_past, pred), axis=-2) | |
ped_trajs_pred_riskier = np.concatenate((ped_trajs_past, pred_riskier), axis=-2) | |
travel_distances = np.sqrt( | |
np.square(ped_trajs[..., -1, :] - ped_trajs[..., 0, :]).sum(-1) | |
) | |
dist_cost, dist = dist_cost_func( | |
ego_traj[:, :, config.num_steps :], ped_trajs[:, :, config.num_steps :] | |
) | |
ttc_cost, (ttc, dist) = ttc_cost_func( | |
ego_traj[:, :, config.num_steps :], | |
ped_trajs[:, :, config.num_steps :], | |
scene.get_ego_ref_velocity(), | |
scene.get_pedestrians_velocities(), | |
) | |
travel_distances_pred = np.sqrt( | |
np.square(ped_trajs_pred[..., -1, :] - ped_trajs_pred[..., 0, :]).sum(-1) | |
) | |
dist_cost_pred, dist_pred = dist_cost_func( | |
ego_traj[:, :, config.num_steps :], ped_trajs_pred[:, :, config.num_steps :] | |
) | |
sample_times = np.array(config.sample_times) | |
ped_velocities_pred = (ped_trajs_pred[:, :, 1:] - ped_trajs_pred[:, :, :-1]) / ( | |
(sample_times[1:] - sample_times[:-1])[None, None, :, None] | |
) | |
ped_velocities_pred = np.concatenate( | |
(ped_velocities_pred[:, :, 0:1], ped_velocities_pred), -2 | |
) | |
ttc_cost_pred, (ttc_pred, dist_pred) = ttc_cost_func( | |
ego_traj[:, :, config.num_steps :], | |
ped_trajs_pred[:, :, config.num_steps :], | |
scene.get_ego_ref_velocity(), | |
ped_velocities_pred[:, :, config.num_steps :], | |
) | |
travel_distances_pred_riskier = np.sqrt( | |
np.square( | |
ped_trajs_pred_riskier[..., -1, :] - ped_trajs_pred_riskier[..., 0, :] | |
).sum(-1) | |
) | |
dist_cost_pred_riskier, dist_pred_riskier = dist_cost_func( | |
ego_traj[:, :, config.num_steps :], | |
ped_trajs_pred_riskier[:, :, config.num_steps :], | |
) | |
sample_times = np.array(config.sample_times) | |
ped_velocities_pred_riskier = ( | |
ped_trajs_pred_riskier[:, :, 1:] - ped_trajs_pred_riskier[:, :, :-1] | |
) / ((sample_times[1:] - sample_times[:-1])[None, None, :, None]) | |
ped_velocities_pred_riskier = np.concatenate( | |
(ped_velocities_pred_riskier[:, :, 0:1], ped_velocities_pred_riskier), 2 | |
) | |
ttc_cost_pred_riskier, (ttc_pred, dist_pred_riskier) = ttc_cost_func( | |
ego_traj[:, :, config.num_steps :], | |
ped_trajs_pred_riskier[:, :, config.num_steps :], | |
scene.get_ego_ref_velocity(), | |
ped_velocities_pred_riskier[:, :, config.num_steps :], | |
) | |
def plot_histograms(travel_distances, dist_cost, ttc_cost, label=""): | |
# Open the plots for the sampled future times | |
fig, ax = plt.subplots(1, 3) | |
fig.suptitle(label) | |
# Plot histograms of traveled distances, depending on the parameters. | |
# It should be multi-modal. There is a minimum distance and a maximum distance and travel distance variations within these bounds. | |
ax[0].set_title("Travel distance") | |
ax[1].set_title("Distance cost") | |
ax[2].set_title("TTC cost") | |
ax[0].hist(travel_distances, bins=30) | |
ax[1].hist(dist_cost.flatten(), bins=30) | |
ax[1].set_ylim([0, 3 * math.sqrt(n_scenes)]) | |
ax[2].hist(ttc_cost.flatten(), bins=30) | |
ax[2].set_ylim([0, 3 * math.sqrt(n_scenes)]) | |
agent_selected = 0 | |
plot_histograms( | |
travel_distances[:, agent_selected], | |
dist_cost[:, agent_selected], | |
ttc_cost[:, agent_selected], | |
"Data", | |
) | |
plot_histograms( | |
travel_distances_pred[:, agent_selected], | |
dist_cost_pred[:, agent_selected], | |
ttc_cost_pred[:, agent_selected], | |
"Prediction normal risk", | |
) | |
plot_histograms( | |
travel_distances_pred_riskier[:, agent_selected], | |
dist_cost_pred_riskier[:, agent_selected], | |
ttc_cost_pred_riskier[:, agent_selected], | |
"Prediction high risk", | |
) | |
print(f"Average ttc risk") | |
print( | |
f"Ground truth: {ttc_cost.mean()}, Prediction: {ttc_cost_pred.mean()}, Biased prediction: {ttc_cost_pred_riskier.mean()}" | |
) | |
plt.show() | |