File size: 13,239 Bytes
c8e1a23 be58ecd b4e0bee 853c736 b4e0bee 853c736 b4e0bee 853c736 b4e0bee 4a97943 2c0d348 e89edfa 19dcfe5 e89edfa 19dcfe5 0c00668 19dcfe5 0c00668 3fb5a9f 19dcfe5 3fb5a9f 19dcfe5 3fb5a9f 19dcfe5 3fb5a9f 0c00668 3fb5a9f 0c00668 3fb5a9f 1d7b21a 0c00668 270fc78 3fb5a9f 270fc78 19dcfe5 270fc78 19dcfe5 0c00668 3fb5a9f 19dcfe5 3fb5a9f 19dcfe5 3fb5a9f 19dcfe5 3fb5a9f 0c00668 3fb5a9f 0c00668 3fb5a9f 1d7b21a 0c00668 270fc78 3fb5a9f 270fc78 19dcfe5 9ed0ac1 b6b97a4 e89edfa 95a993d 0c00668 95a993d e89edfa 95a993d c305e3e 0c00668 3fb5a9f 95a993d 0c00668 3fb5a9f 0c00668 3fb5a9f 1d7b21a 0c00668 3fb5a9f e89edfa 95a993d 19dcfe5 2c0d348 19dcfe5 2c0d348 270fc78 2c0d348 270fc78 2c0d348 270fc78 2c0d348 270fc78 2c0d348 c8e1a23 4a97943 b4e0bee 4a97943 270fc78 c8e1a23 2c0d348 19dcfe5 e89edfa 19dcfe5 270fc78 e89edfa 19dcfe5 b4e0bee c8e1a23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gc
import psutil
import torch
import shutil
from transformers.utils.hub import TRANSFORMERS_CACHE
import streamlit as st
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
def free_memory():
# """Free up CPU & GPU memory before loading a new model."""
# global current_model, current_tokenizer
# if current_model is not None:
# del current_model # Delete the existing model
# current_model = None # Reset reference
# if current_tokenizer is not None:
# del current_tokenizer # Delete the tokenizer
# current_tokenizer = None
gc.collect() # Force garbage collection for CPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache() # Free GPU memory
torch.cuda.ipc_collect() # Clean up PyTorch GPU cache
# If running on CPU, reclaim memory using OS-level commands
try:
if torch.cuda.is_available() is False:
psutil.virtual_memory() # Refresh memory stats
except Exception as e:
print(f"Memory cleanup error: {e}")
# Delete cached Hugging Face models
try:
cache_dir = TRANSFORMERS_CACHE
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
print("Cache cleared!")
except Exception as e:
print(f"β Cache cleanup error: {e}")
def create_sample_example3():
st.write("""
#### Sample Example 3
""")
graph = """
digraph {
// Global graph settings with explicit DPI
graph [bgcolor="white", rankdir=LR, splines=true, nodesep=0.8, ranksep=0.8];
node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=9, margin="0.15,0.1"];
// Define nodes with custom colors
"Input Text" [label="Input Text:\nbruh, floods in Kerala, rescue ops non-stop π", fillcolor="#ffe6de", fontcolor="#000000"];
"Normalized Text" [label="Normalized Text:\nBrother, the floods in Kerala are severe,\nand rescue operations are ongoing continuously.", fillcolor="#ffe6de", fontcolor="#000000"];
Sentiment [label="Sentiment", fillcolor="#fde6ff", fontcolor="black"];
Negative [label="Negative: 4.4367719965521246e-05", fillcolor="#e8e6ff", fontcolor="black"];
Neutral [label="Neutral: 0.9998886585235596", fillcolor="#e8e6ff", fontcolor="black"];
Positive [label="Positive: 7.097498746588826e-05", fillcolor="#e8e6ff", fontcolor="black"];
// Emotion nodes with a uniform style
Anger [label="Anger: 0.080178231", fillcolor="#deffe1", fontcolor="black"];
Disgust [label="Disgust: 0.015257259", fillcolor="#deffe1", fontcolor="black"];
Fear [label="Fear: 0.601871967", fillcolor="#deffe1", fontcolor="black"];
Joy [label="Joy: 0.00410547", fillcolor="#deffe1", fontcolor="black"];
Neutral_e [label="Neutral: 0.0341026", fillcolor="#deffe1", fontcolor="black"];
Sadness [label="Sadness: 0.245294735", fillcolor="#deffe1", fontcolor="black"];
Surprise [label="Surprise: 0.019189769", fillcolor="#deffe1", fontcolor="black"];
// Define edges with a consistent style
// edge [color="#7a7a7a", penwidth=3];
// Define edges
"Input Text" -> Sentiment;
"Input Text" -> "Normalized Text";
Sentiment -> Negative;
Sentiment -> Neutral;
Sentiment -> Positive;
Negative -> Emotion;
Positive -> Emotion [penwidth=0.2];
Neutral -> Emotion [penwidth=0.2];
// Sentiment -> Emotion;
"Input Text" -> Emotion;
Emotion -> Anger;
Emotion -> Disgust;
Emotion -> Fear;
Emotion -> Joy;
Emotion -> Neutral_e;
Emotion -> Sadness;
Emotion -> Surprise;
}
"""
st.graphviz_chart(graph)
def create_sample_example2():
st.write("""
#### Sample Example 2
""")
graph = """
digraph {
// Global graph settings
graph [bgcolor="white", rankdir=TB, splines=true, nodesep=0.8, ranksep=0.8];
node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=9, margin="0.15,0.1"];
// Define nodes with custom colors
"Input Text" [label="Input Text:\nu rlly think all that talk means u tough? lol, when I step up, u ain't gon say sh*t", fillcolor="#ffe6de", fontcolor="black"];
"Normalized Text" [label="Normalized Text:\nyou really think all that talk makes you tough [lol](laughed out loud) when i step up you are not going to say anything", fillcolor="#ffe6de", fontcolor="black"];
Sentiment [label="Sentiment", fillcolor="#fde6ff", fontcolor="black"];
Negative [label="Negative: 0.9999861717224121", fillcolor="#e8e6ff", fontcolor="black"];
Neutral [label="Neutral: 6.885089078423334e-06", fillcolor="#e8e6ff", fontcolor="black"];
Positive [label="Positive: 1.1117132999061141e-05", fillcolor="#e8e6ff", fontcolor="black"];
// Emotion nodes with a uniform style
Anger [label="Anger: 0.14403291", fillcolor="#deffe1", fontcolor="black"];
Disgust [label="Disgust: 0.039282672", fillcolor="#deffe1", fontcolor="black"];
Fear [label="Fear: 0.014349542", fillcolor="#deffe1", fontcolor="black"];
Joy [label="Joy: 0.048965044", fillcolor="#deffe1", fontcolor="black"];
Neutral_e [label="Neutral: 0.494852662", fillcolor="#deffe1", fontcolor="black"];
Sadness [label="Sadness: 0.021111647", fillcolor="#deffe1", fontcolor="black"];
Surprise [label="Surprise: 0.237405464", fillcolor="#deffe1", fontcolor="black"];
// Define edges with a consistent style
// edge [color="#7a7a7a", penwidth=3];
// Define edges
"Input Text" -> Sentiment;
"Input Text" -> "Normalized Text";
Sentiment -> Negative;
Sentiment -> Neutral;
Sentiment -> Positive;
Negative -> Emotion;
Positive -> Emotion [penwidth=0.2];
Neutral -> Emotion [penwidth=0.2];
// Sentiment -> Emotion;
"Input Text" -> Emotion;
Emotion -> Anger;
Emotion -> Disgust;
Emotion -> Fear;
Emotion -> Joy;
Emotion -> Neutral_e;
Emotion -> Sadness;
Emotion -> Surprise;
}
"""
st.graphviz_chart(graph)
def create_sample_example1():
st.write("#### Sample Example 1")
graph = """
digraph G {
rankdir=TD;
bgcolor="white";
nodesep=0.8;
ranksep=0.8;
node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=9, margin="0.15,0.1"];
// Define nodes with colors
"Input Text" [label="Input Text:\ni don't know fr y he's sooo sad", fillcolor="#ffe6de", fontcolor="black"];
"Normalized Text" [label="Normalized Text:\ni do not know for real why he's so sad", fillcolor="#e6f4d7", fontcolor="black"];
Sentiment [label="Sentiment", fillcolor="#fde6ff", fontcolor="black"];
Negative [label="Negative: 0.995874803543091", fillcolor="#e8e6ff", fontcolor="black"];
Neutral [label="Neutral: 6.232635259628296e-05", fillcolor="#e8e6ff", fontcolor="black"];
Positive [label="Positive: 2.0964847564697266e-05", fillcolor="#e8e6ff", fontcolor="black"];
Emotion [label="Emotion", fillcolor="#fdf5e6", fontcolor="black"];
Anger [label="Anger: 0.0", fillcolor="#deffe1", fontcolor="black"];
Disgust [label="Disgust: 0.0", fillcolor="#deffe1", fontcolor="black"];
Fear [label="Fear: 0.010283803842246056", fillcolor="#deffe1", fontcolor="black"];
Joy [label="Joy: 0.0", fillcolor="#deffe1", fontcolor="black"];
Neutral_e [label="Neutral: 0.021935827255129814", fillcolor="#deffe1", fontcolor="black"];
Sadness [label="Sadness: 1.0", fillcolor="#deffe1", fontcolor="black"];
Surprise [label="Surprise: 0.02158345977962017", fillcolor="#deffe1", fontcolor="black"];
// Define edges
"Input Text" -> Sentiment;
"Input Text" -> "Normalized Text";
Sentiment -> Negative;
Sentiment -> Neutral;
Sentiment -> Positive;
Negative -> Emotion;
Positive -> Emotion [penwidth=0.2];
Neutral -> Emotion [penwidth=0.2];
// Sentiment -> Emotion;
"Input Text" -> Emotion;
Emotion -> Anger;
Emotion -> Disgust;
Emotion -> Fear;
Emotion -> Joy;
Emotion -> Neutral_e;
Emotion -> Sadness;
Emotion -> Surprise;
}
"""
st.graphviz_chart(graph)
def create_project_overview():
# st.divider()
st.markdown("## Project Overview")
st.write(f"""
Tachygraphyβoriginally developed to expedite writingβhas evolved over centuries. In the 1990s, it reappeared as micro-text, driving faster communication on social media with characteristics like 'Anytime, Anyplace, Anybody, and Anything (4A)'. This project focuses on the analysis and normalization of micro-text, which is a prevalent form of informal communication today. It aims to enhance Natural Language Processing (NLP) tasks by standardizing micro-text for better sentiment analysis, emotion analysis, data extraction and normalization to understandable form aka. 4A message decoding as primary objective.
"""
)
def create_footer():
# st.divider()
st.markdown("## About Us")
# π οΈ Layout using Streamlit columns
col1, col2, col3 = st.columns([1, 1, 1])
# π Contributors Section
with col1:
st.markdown("### π Contributors")
st.write("##### **Archisman Karmakar**")
st.write("[π LinkedIn](https://www.linkedin.com/in/archismankarmakar/) | [π GitHub](https://www.github.com/ArchismanKarmakar) | [π Kaggle](https://www.kaggle.com/archismancoder)")
st.write("##### **Sumon Chatterjee**")
st.write("[π LinkedIn](https://www.linkedin.com/in/sumon-chatterjee-3b3b43227) | [π GitHub](https://github.com/Sumon670) | [π Kaggle](https://www.kaggle.com/sumonchatterjee)")
# π Mentors Section
with col2:
st.markdown("### π Mentors")
st.write("##### **Prof. Anupam Mondal**")
st.write("[π LinkedIn](https://www.linkedin.com/in/anupam-mondal-ph-d-8a7a1a39/) | [π Google Scholar](https://scholar.google.com/citations?user=ESRR9o4AAAAJ&hl=en) | [π Website](https://sites.google.com/view/anupammondal/home)")
st.write("##### **Prof. Sainik Kumar Mahata**")
st.write("[π LinkedIn](https://www.linkedin.com/in/mahatasainikk) | [π Google Scholar](https://scholar.google.co.in/citations?user=OcJDM50AAAAJ&hl=en) | [π Website](https://sites.google.com/view/sainik-kumar-mahata/home)")
# π Research Project Info Section
with col3:
st.markdown("### π About the Project")
st.write("This is our research project for our **B.Tech final year** and a **journal** which is yet to be published.")
st.write("Built with π using **Streamlit**.")
# π Display Footer
def show_dashboard():
# free_memory()
st.title("Tachygraphy Micro-text Analysis & Normalization")
st.write(f"""Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This application is designed to analyze text data through three stages:""")
coltl1, coltl2 = st.columns(2)
with coltl1:
st.write("""
1. Sentiment Polarity Analysis
2. Emotion Mood-tag Analysis
3. Text Transformation & Normalization
4. Stacked all 3 stages with their best models
5. Data Correction & Collection
""")
with coltl2:
st.write("""
- Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization)
- Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx)
- Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25)
- Deployment Source: [GitHub](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025)
- Streamlit Deployemnt: [Streamlit](https://tachygraphy-microtext.streamlit.app/)
- Hugging Face Space Deployment: [Hugging Face Space](https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder)
""")
create_footer()
create_project_overview()
create_sample_example1()
create_sample_example2()
create_sample_example3()
def __main__():
show_dashboard()
|