LinB203
m
a220803
|
raw
history blame
1.94 kB
# Docker4ML
Useful docker scripts for ML developement.
[https://github.com/SimonLeeGit/Docker4ML](https://github.com/SimonLeeGit/Docker4ML)
## Build Docker Image
```bash
bash docker_build.sh
```
![build_docker](build_docker.png)
## Run Docker Container as Development Envirnoment
```bash
bash docker_run.sh
```
![run_docker](run_docker.png)
## Custom Docker Config
### Config [setup_env.sh](./setup_env.sh)
You can modify this file to custom your settings.
```bash
TAG=ml:dev
BASE_TAG=nvcr.io/nvidia/pytorch:23.12-py3
```
#### TAG
Your built docker image tag, you can set it as what you what.
#### BASE_TAG
The base docker image tag for your built docker image, here we use nvidia pytorch images.
You can check it from [https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch/tags](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch/tags)
Also, you can use other docker image as base, such as: [ubuntu](https://hub.docker.com/_/ubuntu/tags)
### USER_NAME
Your user name used in docker container.
### USER_PASSWD
Your user password used in docker container.
### Config [requriements.txt](./requirements.txt)
You can add your default installed python libraries here.
```txt
transformers==4.27.1
```
By default, it has some libs installed, you can check it from [https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-01.html](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-01.html)
### Config [packages.txt](./packages.txt)
You can add your default apt-get installed packages here.
```txt
wget
curl
git
```
### Config [ports.txt](./ports.txt)
You can add some ports enabled for docker container here.
```txt
-p 6006:6006
-p 8080:8080
```
### Config [postinstallscript.sh](./postinstallscript.sh)
You can add your custom script to run when build docker image.
## Q&A
If you have any use problems, please contact to <[email protected]>.