LinB203
m
a220803
raw
history blame
8.28 kB
# -*- coding: utf-8 -*-
import os
import re
import html
import urllib.parse as ul
import ftfy
import torch
from bs4 import BeautifulSoup
from transformers import T5EncoderModel, AutoTokenizer
from huggingface_hub import hf_hub_download
class T5Embedder:
available_models = ['t5-v1_1-xxl']
bad_punct_regex = re.compile(r'['+'#®•©™&@·º½¾¿¡§~'+'\)'+'\('+'\]'+'\['+'\}'+'\{'+'\|'+'\\'+'\/'+'\*' + r']{1,}') # noqa
def __init__(self, device, dir_or_name='t5-v1_1-xxl', *, cache_dir='./cache_dir', hf_token=None, use_text_preprocessing=True,
t5_model_kwargs=None, torch_dtype=None, model_max_length=120):
self.device = torch.device(device)
self.torch_dtype = torch_dtype or torch.bfloat16
if t5_model_kwargs is None:
t5_model_kwargs = {'low_cpu_mem_usage': True, 'torch_dtype': self.torch_dtype}
t5_model_kwargs['device_map'] = {'shared': self.device, 'encoder': self.device}
self.use_text_preprocessing = use_text_preprocessing
self.hf_token = hf_token
self.cache_dir = cache_dir
self.dir_or_name = dir_or_name
cache_dir = os.path.join(self.cache_dir, 't5-v1_1-xxl')
for filename in ['config.json', 'special_tokens_map.json', 'spiece.model', 'tokenizer_config.json',
'pytorch_model-00001-of-00002.bin', 'pytorch_model-00002-of-00002.bin', 'pytorch_model.bin.index.json']:
hf_hub_download(repo_id='DeepFloyd/t5-v1_1-xxl', filename=filename, cache_dir=cache_dir,
force_filename=filename, token=self.hf_token)
print(cache_dir)
self.tokenizer = AutoTokenizer.from_pretrained(cache_dir)
self.model = T5EncoderModel.from_pretrained(cache_dir, **t5_model_kwargs).eval()
self.model_max_length = model_max_length
def get_text_embeddings(self, texts):
texts = [self.text_preprocessing(text) for text in texts]
text_tokens_and_mask = self.tokenizer(
texts,
max_length=self.model_max_length,
padding='max_length',
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors='pt'
)
text_tokens_and_mask['input_ids'] = text_tokens_and_mask['input_ids']
text_tokens_and_mask['attention_mask'] = text_tokens_and_mask['attention_mask']
with torch.no_grad():
text_encoder_embs = self.model(
input_ids=text_tokens_and_mask['input_ids'].to(self.device),
attention_mask=text_tokens_and_mask['attention_mask'].to(self.device),
)['last_hidden_state'].detach()
return text_encoder_embs, text_tokens_and_mask['attention_mask'].to(self.device)
def text_preprocessing(self, text):
if self.use_text_preprocessing:
# The exact text cleaning as was in the training stage:
text = self.clean_caption(text)
text = self.clean_caption(text)
return text
else:
return text.lower().strip()
@staticmethod
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub('<person>', 'person', caption)
# urls:
caption = re.sub(
r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', # noqa
'', caption) # regex for urls
caption = re.sub(
r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', # noqa
'', caption) # regex for urls
# html:
caption = BeautifulSoup(caption, features='html.parser').text
# @<nickname>
caption = re.sub(r'@[\w\d]+\b', '', caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r'[\u31c0-\u31ef]+', '', caption)
caption = re.sub(r'[\u31f0-\u31ff]+', '', caption)
caption = re.sub(r'[\u3200-\u32ff]+', '', caption)
caption = re.sub(r'[\u3300-\u33ff]+', '', caption)
caption = re.sub(r'[\u3400-\u4dbf]+', '', caption)
caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption)
caption = re.sub(r'[\u4e00-\u9fff]+', '', caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+', # noqa
'-', caption)
# кавычки к одному стандарту
caption = re.sub(r'[`´«»“”¨]', '"', caption)
caption = re.sub(r'[‘’]', "'", caption)
# &quot;
caption = re.sub(r'&quot;?', '', caption)
# &amp
caption = re.sub(r'&amp', '', caption)
# ip adresses:
caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption)
# article ids:
caption = re.sub(r'\d:\d\d\s+$', '', caption)
# \n
caption = re.sub(r'\\n', ' ', caption)
# "#123"
caption = re.sub(r'#\d{1,3}\b', '', caption)
# "#12345.."
caption = re.sub(r'#\d{5,}\b', '', caption)
# "123456.."
caption = re.sub(r'\b\d{6,}\b', '', caption)
# filenames:
caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption)
#
caption = re.sub(r'[\"\']{2,}', r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r'[\.]{2,}', r' ', caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r' ', caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r'\s+\.\s+', r' ', caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r'(?:\-|\_)')
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, ' ', caption)
caption = self.basic_clean(caption)
caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption) # jc6640
caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption) # jc6640vc
caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption) # 6640vc231
caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption)
caption = re.sub(r'(free\s)?download(\sfree)?', '', caption)
caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption)
caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption)
caption = re.sub(r'\bpage\s+\d+\b', '', caption)
caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption) # j2d1a2a...
caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption)
caption = re.sub(r'\b\s+\:\s+', r': ', caption)
caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption)
caption = re.sub(r'\s+', ' ', caption)
caption.strip()
caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption)
caption = re.sub(r'^[\'\_,\-\:;]', r'', caption)
caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption)
caption = re.sub(r'^\.\S+$', '', caption)
return caption.strip()
if __name__ == '__main__':
t5 = T5Embedder(device="cuda", cache_dir='./cache_dir', torch_dtype=torch.float)
device = t5.device
prompts = ['I am a test caption', 'Test twice']
with torch.no_grad():
caption_embs, emb_masks = t5.get_text_embeddings(prompts)
emb_dict = {
'caption_feature': caption_embs.float().cpu().data.numpy(),
'attention_mask': emb_masks.cpu().data.numpy(),
}
import ipdb;ipdb.set_trace()
print()