|
# Dataset Download and Management |
|
|
|
## Dataset Format |
|
|
|
The training data should be provided in a CSV file with the following format: |
|
|
|
```csv |
|
/absolute/path/to/image1.jpg, caption1, num_of_frames |
|
/absolute/path/to/image2.jpg, caption2, num_of_frames |
|
``` |
|
|
|
## HD-VG-130M |
|
|
|
This dataset comprises 130M text-video pairs. You can download the dataset and prepare it for training according to [the dataset repository's instructions](https://github.com/daooshee/HD-VG-130M). There is a README.md file in the Google Drive link that provides instructions on how to download and cut the videos. For this version, we directly use the dataset provided by the authors. |
|
|
|
## Demo Dataset |
|
|
|
You can use ImageNet and UCF101 for a quick demo. After downloading the datasets, you can use the following command to prepare the csv file for the dataset: |
|
|
|
```bash |
|
# ImageNet |
|
python -m tools.datasets.convert_dataset imagenet IMAGENET_FOLDER --split train |
|
# UCF101 |
|
python -m tools.datasets.convert_dataset ucf101 UCF101_FOLDER --split videos |
|
``` |
|
|
|
## Manage datasets |
|
|
|
We provide `csvutils.py` to manage the CSV files. You can use the following commands to process the CSV files: |
|
|
|
```bash |
|
# generate DATA_fmin_128_fmax_256.csv with frames between 128 and 256 |
|
python -m tools.datasets.csvutil DATA.csv --fmin 128 --fmax 256 |
|
# generate DATA_root.csv with absolute path |
|
python -m tools.datasets.csvutil DATA.csv --root /absolute/path/to/dataset |
|
# remove videos with no captions |
|
python -m tools.datasets.csvutil DATA.csv --remove-empty-caption |
|
# compute the number of frames for each video |
|
python -m tools.datasets.csvutil DATA.csv --relength |
|
# remove caption prefix |
|
python -m tools.datasets.csvutil DATA.csv --remove-caption-prefix |
|
``` |
|
|
|
To merge multiple CSV files, you can use the following command: |
|
|
|
```bash |
|
cat *csv > combined.csv |
|
``` |
|
|