|
import os |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
from huggingface_hub import login |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Zyphra/Zamba2-7B", |
|
device_map="cuda", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
|
|
def generate_response(input_text, max_new_tokens, temperature, top_k, top_p, repetition_penalty, num_beams, length_penalty): |
|
|
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device) |
|
|
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
num_beams=num_beams, |
|
length_penalty=length_penalty, |
|
num_return_sequences=1 |
|
) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_response, |
|
inputs=[ |
|
gr.Textbox(lines=1, placeholder="Enter a text to prepend...", label="Input Text"), |
|
gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens"), |
|
gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature"), |
|
gr.Slider(1, 100, step=1, value=50, label="Top K"), |
|
gr.Slider(0.1, 1.0, step=0.1, value=0.9, label="Top P"), |
|
gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty"), |
|
gr.Slider(1, 10, step=1, value=5, label="Number of Beams"), |
|
gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty") |
|
], |
|
outputs=gr.Textbox(label="Generated Response"), |
|
title="Zamba2-7B Model", |
|
description="Ask Zamba2 7B a question with customizable parameters." |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|