Spaces:
Runtime error
Runtime error
# The code is revised from DiT | |
import os | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import math | |
from typing import Dict | |
from diffusers.loaders import PeftAdapterMixin | |
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp | |
from huggingface_hub import snapshot_download | |
from OmniGen.transformer import Phi3Config, Phi3Transformer | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t, dtype=torch.float32): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=1): | |
""" | |
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or | |
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
if isinstance(grid_size, int): | |
grid_size = (grid_size, grid_size) | |
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale | |
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2. | |
omega = 1. / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
class PatchEmbedMR(nn.Module): | |
""" 2D Image to Patch Embedding | |
""" | |
def __init__( | |
self, | |
patch_size: int = 2, | |
in_chans: int = 4, | |
embed_dim: int = 768, | |
bias: bool = True, | |
): | |
super().__init__() | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) | |
def forward(self, x): | |
x = self.proj(x) | |
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC | |
return x | |
class OmniGen(nn.Module, PeftAdapterMixin): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
transformer_config: Phi3Config, | |
patch_size=2, | |
in_channels=4, | |
pe_interpolation: float = 1.0, | |
pos_embed_max_size: int = 192, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = in_channels | |
self.patch_size = patch_size | |
self.pos_embed_max_size = pos_embed_max_size | |
hidden_size = transformer_config.hidden_size | |
self.x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True) | |
self.input_x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True) | |
self.time_token = TimestepEmbedder(hidden_size) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
self.pe_interpolation = pe_interpolation | |
pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, interpolation_scale=self.pe_interpolation, base_size=64) | |
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=True) | |
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) | |
self.initialize_weights() | |
self.llm = Phi3Transformer(config=transformer_config) | |
self.llm.config.use_cache = False | |
def from_pretrained(cls, model_name): | |
if not os.path.exists(os.path.join(model_name, 'model.pt')): | |
cache_folder = os.getenv('HF_HUB_CACHE') | |
model_name = snapshot_download(repo_id=model_name, | |
cache_dir=cache_folder, | |
ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5']) | |
config = Phi3Config.from_pretrained(model_name) | |
model = cls(config) | |
ckpt = torch.load(os.path.join(model_name, 'model.pt'), map_location='cpu') | |
model.load_state_dict(ckpt) | |
return model | |
def initialize_weights(self): | |
assert not hasattr(self, "llama") | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.proj.bias, 0) | |
w = self.input_x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
nn.init.normal_(self.time_token.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.time_token.mlp[2].weight, std=0.02) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def unpatchify(self, x, h, w): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
x = x.reshape(shape=(x.shape[0], h//self.patch_size, w//self.patch_size, self.patch_size, self.patch_size, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c, h, w)) | |
return imgs | |
def cropped_pos_embed(self, height, width): | |
"""Crops positional embeddings for SD3 compatibility.""" | |
if self.pos_embed_max_size is None: | |
raise ValueError("`pos_embed_max_size` must be set for cropping.") | |
height = height // self.patch_size | |
width = width // self.patch_size | |
if height > self.pos_embed_max_size: | |
raise ValueError( | |
f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}." | |
) | |
if width > self.pos_embed_max_size: | |
raise ValueError( | |
f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}." | |
) | |
top = (self.pos_embed_max_size - height) // 2 | |
left = (self.pos_embed_max_size - width) // 2 | |
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1) | |
spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :] | |
# print(top, top + height, left, left + width, spatial_pos_embed.size()) | |
spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1]) | |
return spatial_pos_embed | |
def patch_multiple_resolutions(self, latents, padding_latent=None, is_input_images:bool=False): | |
if isinstance(latents, list): | |
return_list = False | |
if padding_latent is None: | |
padding_latent = [None] * len(latents) | |
return_list = True | |
patched_latents, num_tokens, shapes = [], [], [] | |
for latent, padding in zip(latents, padding_latent): | |
height, width = latent.shape[-2:] | |
if is_input_images: | |
latent = self.input_x_embedder(latent) | |
else: | |
latent = self.x_embedder(latent) | |
pos_embed = self.cropped_pos_embed(height, width) | |
latent = latent + pos_embed | |
if padding is not None: | |
latent = torch.cat([latent, padding], dim=-2) | |
patched_latents.append(latent) | |
num_tokens.append(pos_embed.size(1)) | |
shapes.append([height, width]) | |
if not return_list: | |
latents = torch.cat(patched_latents, dim=0) | |
else: | |
latents = patched_latents | |
else: | |
height, width = latents.shape[-2:] | |
if is_input_images: | |
latents = self.input_x_embedder(latents) | |
else: | |
latents = self.x_embedder(latents) | |
pos_embed = self.cropped_pos_embed(height, width) | |
latents = latents + pos_embed | |
num_tokens = latents.size(1) | |
shapes = [height, width] | |
return latents, num_tokens, shapes | |
def forward(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, padding_latent=None, past_key_values=None, return_past_key_values=True): | |
""" | |
""" | |
input_is_list = isinstance(x, list) | |
x, num_tokens, shapes = self.patch_multiple_resolutions(x, padding_latent) | |
time_token = self.time_token(timestep, dtype=x[0].dtype).unsqueeze(1) | |
if input_img_latents is not None: | |
input_latents, _, _ = self.patch_multiple_resolutions(input_img_latents, is_input_images=True) | |
if input_ids is not None: | |
condition_embeds = self.llm.embed_tokens(input_ids).clone() | |
input_img_inx = 0 | |
for b_inx in input_image_sizes.keys(): | |
for start_inx, end_inx in input_image_sizes[b_inx]: | |
condition_embeds[b_inx, start_inx: end_inx] = input_latents[input_img_inx] | |
input_img_inx += 1 | |
if input_img_latents is not None: | |
assert input_img_inx == len(input_latents) | |
input_emb = torch.cat([condition_embeds, time_token, x], dim=1) | |
else: | |
input_emb = torch.cat([time_token, x], dim=1) | |
output = self.llm(inputs_embeds=input_emb, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values) | |
output, past_key_values = output.last_hidden_state, output.past_key_values | |
if input_is_list: | |
image_embedding = output[:, -max(num_tokens):] | |
time_emb = self.t_embedder(timestep, dtype=x.dtype) | |
x = self.final_layer(image_embedding, time_emb) | |
latents = [] | |
for i in range(x.size(0)): | |
latent = x[i:i+1, :num_tokens[i]] | |
latent = self.unpatchify(latent, shapes[i][0], shapes[i][1]) | |
latents.append(latent) | |
else: | |
image_embedding = output[:, -num_tokens:] | |
time_emb = self.t_embedder(timestep, dtype=x.dtype) | |
x = self.final_layer(image_embedding, time_emb) | |
latents = self.unpatchify(x, shapes[0], shapes[1]) | |
if return_past_key_values: | |
return latents, past_key_values | |
return latents | |
def forward_with_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
self.llm.config.use_cache = use_kv_cache | |
model_out, past_key_values = self.forward(x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, past_key_values=past_key_values, return_past_key_values=True) | |
if use_img_cfg: | |
cond, uncond, img_cond = torch.split(model_out, len(model_out) // 3, dim=0) | |
cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond) | |
model_out = [cond, cond, cond] | |
else: | |
cond, uncond = torch.split(model_out, len(model_out) // 2, dim=0) | |
cond = uncond + cfg_scale * (cond - uncond) | |
model_out = [cond, cond] | |
return torch.cat(model_out, dim=0), past_key_values | |
def forward_with_separate_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache, return_past_key_values=True): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
self.llm.config.use_cache = use_kv_cache | |
if past_key_values is None: | |
past_key_values = [None] * len(attention_mask) | |
x = torch.split(x, len(x) // len(attention_mask), dim=0) | |
timestep = timestep.to(x[0].dtype) | |
timestep = torch.split(timestep, len(timestep) // len(input_ids), dim=0) | |
model_out, pask_key_values = [], [] | |
for i in range(len(input_ids)): | |
temp_out, temp_pask_key_values = self.forward(x[i], timestep[i], input_ids[i], input_img_latents[i], input_image_sizes[i], attention_mask[i], position_ids[i], past_key_values[i]) | |
model_out.append(temp_out) | |
pask_key_values.append(temp_pask_key_values) | |
if len(model_out) == 3: | |
cond, uncond, img_cond = model_out | |
cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond) | |
model_out = [cond, cond, cond] | |
elif len(model_out) == 2: | |
cond, uncond = model_out | |
cond = uncond + cfg_scale * (cond - uncond) | |
model_out = [cond, cond] | |
else: | |
return model_out[0] | |
return torch.cat(model_out, dim=0), pask_key_values | |