File size: 10,145 Bytes
640b1c8
 
d161383
 
 
640b1c8
 
 
415595f
640b1c8
 
415595f
 
d161383
 
 
640b1c8
 
 
415595f
640b1c8
 
 
d161383
 
640b1c8
d161383
 
 
 
 
 
 
 
415595f
 
d161383
 
 
 
 
415595f
640b1c8
415595f
 
d161383
 
 
640b1c8
 
 
415595f
640b1c8
 
d161383
 
 
640b1c8
d161383
 
 
 
 
 
 
 
 
415595f
 
 
d161383
415595f
 
 
d161383
 
 
 
 
 
415595f
d161383
 
 
415595f
 
d161383
415595f
d161383
 
 
 
415595f
640b1c8
415595f
 
d161383
 
0739c8b
640b1c8
be32fd8
640b1c8
d161383
be32fd8
d161383
 
be32fd8
0739c8b
d161383
415595f
0739c8b
be32fd8
d161383
415595f
0739c8b
 
415595f
 
 
 
 
be32fd8
0739c8b
be32fd8
415595f
 
 
be32fd8
 
 
 
 
 
 
415595f
be32fd8
 
415595f
be32fd8
 
415595f
 
be32fd8
415595f
be32fd8
 
 
 
415595f
be32fd8
 
 
 
415595f
be32fd8
 
 
415595f
be32fd8
415595f
d161383
415595f
 
d161383
415595f
d161383
 
 
 
 
 
415595f
0739c8b
 
415595f
0739c8b
 
d161383
 
 
 
 
415595f
d161383
 
 
415595f
d161383
 
415595f
d161383
 
 
 
 
 
415595f
d161383
 
415595f
d161383
 
415595f
d161383
 
 
415595f
d161383
415595f
d161383
 
415595f
 
d161383
415595f
d161383
0739c8b
 
415595f
0739c8b
 
415595f
0739c8b
 
 
d161383
 
 
 
 
415595f
d161383
 
415595f
d161383
 
 
 
 
 
 
415595f
d161383
415595f
 
 
d161383
 
 
 
 
 
0739c8b
 
415595f
0739c8b
 
 
d161383
 
 
 
 
 
415595f
d161383
 
 
415595f
d161383
415595f
 
d161383
415595f
d161383
415595f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# src/vectorstores/chroma_vectorstore.py
import chromadb
from typing import List, Callable, Any, Dict, Optional
from chromadb.config import Settings
import logging

from .base_vectorstore import BaseVectorStore


class ChromaVectorStore(BaseVectorStore):
    def __init__(
        self,
        embedding_function: Callable[[List[str]], List[List[float]]],
        persist_directory: str = './chroma_db',
        collection_name: str = "documents",
        client_settings: Optional[Dict[str, Any]] = None
    ):
        """
        Initialize Chroma Vector Store

        Args:
            embedding_function (Callable): Function to generate embeddings
            persist_directory (str): Directory to persist the vector store
            collection_name (str): Name of the collection to use
            client_settings (Optional[Dict[str, Any]]): Additional settings for ChromaDB client
        """
        try:
            settings = Settings(
                persist_directory=persist_directory,
                **(client_settings or {})
            )
            self.client = chromadb.PersistentClient(settings=settings)
            self.collection = self.client.get_or_create_collection(
                name=collection_name,
                # Using cosine similarity by default
                metadata={"hnsw:space": "cosine"}
            )
            self.embedding_function = embedding_function
        except Exception as e:
            logging.error(f"Error initializing ChromaDB: {str(e)}")
            raise

    def add_documents(
        self,
        documents: List[str],
        embeddings: Optional[List[List[float]]] = None,
        metadatas: Optional[List[Dict[str, Any]]] = None,
        ids: Optional[List[str]] = None
    ) -> None:
        """
        Add documents to the vector store

        Args:
            documents (List[str]): List of document texts
            embeddings (Optional[List[List[float]]]): Pre-computed embeddings
            metadatas (Optional[List[Dict[str, Any]]]): Metadata for each document
            ids (Optional[List[str]]): Custom IDs for the documents
        """
        try:
            if not documents:
                logging.warning("No documents provided to add_documents")
                return

            if not embeddings:
                embeddings = self.embedding_function(documents)

            if len(documents) != len(embeddings):
                raise ValueError(
                    "Number of documents and embeddings must match")

            # Use provided IDs or generate them
            doc_ids = ids if ids is not None else [
                f"doc_{i}" for i in range(len(documents))]

            # Prepare add parameters
            add_params = {
                "documents": documents,
                "embeddings": embeddings,
                "ids": doc_ids
            }

            # Only include metadatas if provided
            if metadatas is not None:
                if len(metadatas) != len(documents):
                    raise ValueError(
                        "Number of documents and metadatas must match")
                add_params["metadatas"] = metadatas

            self.collection.add(**add_params)
        except Exception as e:
            logging.error(f"Error adding documents to ChromaDB: {str(e)}")
            raise

    def similarity_search(
        self,
        query_embedding: List[float],
        top_k: int = 3,
        **kwargs
    ) -> List[Dict[str, Any]]:
        """
        Perform similarity search with improved matching
        """
        try:
            # Increase n_results to get more potential matches
            results = self.collection.query(
                query_embeddings=[query_embedding],
                n_results=10,  # Get more initial results
                include=['documents', 'metadatas', 'distances']
            )

            if not results or 'documents' not in results or not results['documents']:
                logging.warning("No results found in similarity search")
                return []

            formatted_results = []
            documents = results['documents'][0]  # First query's results
            metadatas = results['metadatas'][0] if results.get('metadatas') else [
                None] * len(documents)
            distances = results['distances'][0] if results.get('distances') else [
                None] * len(documents)

            # Process all results
            for doc, meta, dist in zip(documents, metadatas, distances):
                # Convert distance to similarity score (1 is most similar, 0 is least)
                similarity_score = 1.0 - \
                    (dist or 0.0) if dist is not None else None

                # More permissive threshold and include all results for filtering
                if similarity_score is not None and similarity_score > 0.2:  # Lower threshold
                    formatted_results.append({
                        'text': doc,
                        'metadata': meta or {},
                        'score': similarity_score
                    })

            # Sort by score and get top_k results
            formatted_results.sort(key=lambda x: x['score'] or 0, reverse=True)

            # Check if results are from same document and get consecutive chunks
            if formatted_results:
                first_doc_id = formatted_results[0]['metadata'].get(
                    'document_id')
                all_chunks_same_doc = []

                # Get all chunks from the same document
                for result in formatted_results:
                    if result['metadata'].get('document_id') == first_doc_id:
                        all_chunks_same_doc.append(result)

                # Sort chunks by their index to maintain document flow
                all_chunks_same_doc.sort(
                    key=lambda x: x['metadata'].get('chunk_index', 0)
                )

                # Return either all chunks from same document or top_k results
                if len(all_chunks_same_doc) > 0:
                    return all_chunks_same_doc[:top_k]

            return formatted_results[:top_k]

        except Exception as e:
            logging.error(
                f"Error performing similarity search in ChromaDB: {str(e)}")
            raise

    def get_all_documents(
        self,
        include_embeddings: bool = False
    ) -> List[Dict[str, Any]]:
        """
        Retrieve all documents from the vector store

        Args:
            include_embeddings (bool): Whether to include embeddings in the response

        Returns:
            List[Dict[str, Any]]: List of documents with their IDs and optionally embeddings
        """
        try:
            include = ["documents", "metadatas"]
            if include_embeddings:
                include.append("embeddings")

            results = self.collection.get(
                include=include
            )

            if not results or 'documents' not in results:
                return []

            documents = []
            for i in range(len(results['documents'])):
                doc = {
                    'id': str(i),  # Generate sequential IDs
                    'text': results['documents'][i],
                }

                if include_embeddings and 'embeddings' in results:
                    doc['embedding'] = results['embeddings'][i]

                if 'metadatas' in results and results['metadatas'][i]:
                    doc['metadata'] = results['metadatas'][i]

                    # Use document_id from metadata if available
                    if 'document_id' in results['metadatas'][i]:
                        doc['id'] = results['metadatas'][i]['document_id']

                documents.append(doc)

            return documents
        except Exception as e:
            logging.error(
                f"Error retrieving documents from ChromaDB: {str(e)}")
            raise

    def get_document_chunks(self, document_id: str) -> List[Dict[str, Any]]:
        """
        Retrieve all chunks for a specific document

        Args:
            document_id (str): ID of the document to retrieve chunks for

        Returns:
            List[Dict[str, Any]]: List of document chunks with their metadata
        """
        try:
            results = self.collection.get(
                where={"document_id": document_id},
                include=["documents", "metadatas"]
            )

            if not results or 'documents' not in results:
                return []

            chunks = []
            for i in range(len(results['documents'])):
                chunk = {
                    'text': results['documents'][i],
                    'metadata': results['metadatas'][i] if results.get('metadatas') else None
                }
                chunks.append(chunk)

            # Sort by chunk_index if available
            chunks.sort(key=lambda x: x.get(
                'metadata', {}).get('chunk_index', 0))

            return chunks
        except Exception as e:
            logging.error(f"Error retrieving document chunks: {str(e)}")
            raise

    def delete_document(self, document_id: str) -> None:
        """
        Delete all chunks associated with a document_id

        Args:
            document_id (str): ID of the document to delete
        """
        try:
            # Get all chunks with the given document_id
            results = self.collection.get(
                where={"document_id": document_id},
                include=["metadatas"]
            )

            if not results or 'ids' not in results:
                logging.warning(f"No document found with ID: {document_id}")
                return

            # Delete all chunks associated with the document
            chunk_ids = [
                f"{document_id}-chunk-{i}" for i in range(len(results['metadatas']))]
            self.collection.delete(ids=chunk_ids)

        except Exception as e:
            logging.error(
                f"Error deleting document {document_id} from ChromaDB: {str(e)}")
            raise