Spaces:
Running
Running
File size: 11,479 Bytes
640b1c8 e9d730a 4daad35 e9d730a e87abff 4daad35 640b1c8 3ea83cb e9d730a d161383 e9d730a d161383 e9d730a 640b1c8 4daad35 640b1c8 d161383 e87abff 4daad35 e87abff d161383 e87abff 4daad35 e87abff e9d730a e87abff e9d730a e87abff 4daad35 d161383 4daad35 d161383 e87abff 640b1c8 e87abff 640b1c8 e87abff e9d730a 640b1c8 e87abff 640b1c8 e87abff 640b1c8 e87abff e9d730a e87abff e9d730a e87abff e9d730a e87abff e9d730a e87abff 640b1c8 0739c8b 640b1c8 e87abff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# src/main.py
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from typing import List
import uuid
from datetime import datetime
from pathlib import Path
import os
# Import custom modules1
from src.agents.rag_agent import RAGAgent
from src.models.document import AllDocumentsResponse, StoredDocument
from src.utils.document_processor import DocumentProcessor
from src.utils.conversation_summarizer import ConversationSummarizer
from src.utils.logger import logger
from src.utils.llm_utils import get_llm_instance, get_vector_store
from src.db.mongodb_store import MongoDBStore
from src.implementations.document_service import DocumentService
from src.models import (
ChatRequest,
ChatResponse,
DocumentResponse,
BatchUploadResponse,
SummarizeRequest,
SummaryResponse,
FeedbackRequest
)
from config.config import settings
app = FastAPI(title="Chatbot API")
# Initialize MongoDB
mongodb = MongoDBStore(settings.MONGODB_URI)
# Initialize core components
doc_processor = DocumentProcessor()
summarizer = ConversationSummarizer()
document_service = DocumentService(doc_processor, mongodb)
# Create uploads directory if it doesn't exist
UPLOADS_DIR = Path("uploads")
UPLOADS_DIR.mkdir(exist_ok=True)
# Mount the uploads directory for static file serving
app.mount("/docs", StaticFiles(directory=str(UPLOADS_DIR)), name="documents")
@app.get("/documents")
async def get_all_documents():
"""Get all documents from MongoDB"""
try:
documents = await mongodb.get_all_documents()
formatted_documents = []
for doc in documents:
try:
formatted_doc = {
"document_id": doc.get("document_id"),
"filename": doc.get("filename"),
"content_type": doc.get("content_type"),
"file_size": doc.get("file_size"),
"url_path": doc.get("url_path"),
"upload_timestamp": doc.get("upload_timestamp")
}
formatted_documents.append(formatted_doc)
except Exception as e:
logger.error(f"Error formatting document {doc.get('document_id', 'unknown')}: {str(e)}")
continue
return {
"total_documents": len(formatted_documents),
"documents": formatted_documents
}
except Exception as e:
logger.error(f"Error retrieving documents: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/documents/{document_id}/download")
async def get_document_file(document_id: str):
"""Serve a document file by its ID"""
try:
# Get document info from MongoDB
doc = await mongodb.get_document(document_id)
if not doc:
raise HTTPException(status_code=404, detail="Document not found")
# Extract filename from url_path
filename = doc["url_path"].split("/")[-1]
file_path = UPLOADS_DIR / filename
if not file_path.exists():
raise HTTPException(
status_code=404,
detail=f"File not found on server: {filename}"
)
return FileResponse(
path=str(file_path),
filename=doc["filename"],
media_type=doc["content_type"]
)
except Exception as e:
logger.error(f"Error serving document file: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", response_model=BatchUploadResponse)
async def upload_documents(
files: List[UploadFile] = File(...),
background_tasks: BackgroundTasks = BackgroundTasks()
):
"""Upload and process multiple documents"""
try:
vector_store, _ = await get_vector_store()
response = await document_service.process_documents(
files,
vector_store,
background_tasks
)
return response
except Exception as e:
logger.error(f"Error in document upload: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/documentchunks/{document_id}")
async def get_document_chunks(document_id: str):
"""Get all chunks for a specific document"""
try:
vector_store, _ = await get_vector_store()
chunks = vector_store.get_document_chunks(document_id)
if not chunks:
raise HTTPException(status_code=404, detail="Document not found")
return {
"document_id": document_id,
"total_chunks": len(chunks),
"chunks": chunks
}
except Exception as e:
logger.error(f"Error retrieving document chunks: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.delete("/documents/{document_id}")
async def delete_document(document_id: str):
"""Delete document from MongoDB, ChromaDB, and physical storage"""
try:
# First get document details from MongoDB to get file path
document = await mongodb.get_document(document_id)
if not document:
raise HTTPException(status_code=404, detail="Document not found")
# Get vector store instance
vector_store, _ = await get_vector_store()
# Delete physical file using document service
deletion_success = await document_service.delete_document(document_id)
if not deletion_success:
logger.warning(f"Failed to delete physical file for document {document_id}")
# Delete from vector store
try:
vector_store.delete_document(document_id)
except Exception as e:
logger.error(f"Error deleting document from vector store: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Failed to delete document from vector store: {str(e)}"
)
# Delete from MongoDB - don't check return value since document might already be deleted
await mongodb.delete_document(document_id)
return {
"status": "success",
"message": f"Document {document_id} successfully deleted from all stores"
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in delete_document endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(
request: ChatRequest,
background_tasks: BackgroundTasks
):
"""Chat endpoint with RAG support"""
try:
vector_store, embedding_model = await get_vector_store()
llm = get_llm_instance(request.llm_provider)
rag_agent = RAGAgent(
llm=llm,
embedding=embedding_model,
vector_store=vector_store
)
if request.stream:
return StreamingResponse(
rag_agent.generate_streaming_response(request.query),
media_type="text/event-stream"
)
response = await rag_agent.generate_response(
query=request.query,
temperature=request.temperature
)
conversation_id = request.conversation_id or str(uuid.uuid4())
# Store chat history in MongoDB
await mongodb.store_message(
conversation_id=conversation_id,
query=request.query,
response=response.response,
context=response.context_docs,
sources=response.sources,
llm_provider=request.llm_provider
)
return ChatResponse(
response=response.response,
context=response.context_docs,
sources=response.sources,
conversation_id=conversation_id,
timestamp=datetime.now(),
relevant_doc_scores=response.scores if hasattr(response, 'scores') else None
)
except Exception as e:
logger.error(f"Error in chat endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/chat/history/{conversation_id}")
async def get_conversation_history(conversation_id: str):
"""Get complete conversation history"""
history = await mongodb.get_conversation_history(conversation_id)
if not history:
raise HTTPException(status_code=404, detail="Conversation not found")
return {
"conversation_id": conversation_id,
"messages": history
}
@app.post("/chat/summarize", response_model=SummaryResponse)
async def summarize_conversation(request: SummarizeRequest):
"""Generate a summary of a conversation"""
try:
messages = await mongodb.get_messages_for_summary(request.conversation_id)
if not messages:
raise HTTPException(status_code=404, detail="Conversation not found")
summary = await summarizer.summarize_conversation(
messages,
include_metadata=request.include_metadata
)
return SummaryResponse(**summary)
except Exception as e:
logger.error(f"Error generating summary: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat/feedback/{conversation_id}")
async def submit_feedback(
conversation_id: str,
feedback_request: FeedbackRequest
):
"""Submit feedback for a conversation"""
try:
success = await mongodb.update_feedback(
conversation_id=conversation_id,
feedback=feedback_request.feedback,
rating=feedback_request.rating
)
if not success:
raise HTTPException(status_code=404, detail="Conversation not found")
return {"status": "Feedback submitted successfully"}
except Exception as e:
logger.error(f"Error submitting feedback: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/debug/config")
async def debug_config():
"""Debug endpoint to check configuration"""
import os
from config.config import settings
from pathlib import Path
debug_info = {
"environment_variables": {
"OPENAI_API_KEY": "[SET]" if os.getenv('OPENAI_API_KEY') else "[NOT SET]",
"OPENAI_MODEL": os.getenv('OPENAI_MODEL', '[NOT SET]')
},
"settings": {
"OPENAI_API_KEY": "[SET]" if settings.OPENAI_API_KEY else "[NOT SET]",
"OPENAI_MODEL": settings.OPENAI_MODEL,
},
"files": {
"env_file_exists": Path('.env').exists(),
"openai_config_exists": (Path.home() / '.openai' / 'api_key').exists()
}
}
if settings.OPENAI_API_KEY:
key = settings.OPENAI_API_KEY
debug_info["api_key_info"] = {
"length": len(key),
"preview": f"{key[:4]}...{key[-4:]}" if len(key) > 8 else "[INVALID LENGTH]"
}
return debug_info
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |