File size: 12,563 Bytes
640b1c8
e9d730a
4daad35
 
9700f95
e9d730a
e87abff
 
4daad35
 
640b1c8
3ea83cb
e9d730a
d161383
e9d730a
 
 
 
 
 
 
 
 
d161383
e9d730a
 
 
 
 
640b1c8
 
4daad35
640b1c8
9700f95
 
 
 
 
 
 
 
d161383
 
 
e87abff
4daad35
e87abff
d161383
e87abff
4daad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
 
 
 
e9d730a
 
 
 
e87abff
e9d730a
e87abff
 
4daad35
d161383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4daad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d161383
e87abff
 
 
 
 
 
 
 
 
640b1c8
9700f95
640b1c8
e87abff
 
9700f95
 
640b1c8
 
9700f95
 
 
 
e87abff
9700f95
 
e87abff
 
 
9700f95
e9d730a
 
 
 
 
 
 
640b1c8
 
 
e87abff
 
 
 
 
 
640b1c8
e87abff
640b1c8
e87abff
 
 
 
 
 
e9d730a
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
e9d730a
e87abff
e9d730a
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9700f95
 
 
 
 
 
e9d730a
 
 
 
 
 
 
9700f95
 
 
 
e87abff
9700f95
 
 
 
 
 
 
 
 
e87abff
9700f95
 
e87abff
 
640b1c8
 
0739c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640b1c8
 
e87abff
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# src/main.py
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware  # Add this import
from typing import List
import uuid
from datetime import datetime
from pathlib import Path
import os

# Import custom modules1
from src.agents.rag_agent import RAGAgent
from src.models.document import AllDocumentsResponse, StoredDocument
from src.utils.document_processor import DocumentProcessor
from src.utils.conversation_summarizer import ConversationSummarizer
from src.utils.logger import logger
from src.utils.llm_utils import get_llm_instance, get_vector_store
from src.db.mongodb_store import MongoDBStore
from src.implementations.document_service import DocumentService
from src.models import (
    ChatRequest, 
    ChatResponse, 
    DocumentResponse,
    BatchUploadResponse,
    SummarizeRequest,
    SummaryResponse,
    FeedbackRequest
)
from config.config import settings

app = FastAPI(title="Chatbot API")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["http://localhost:8080"],  # Add your frontend URL
    allow_credentials=True,
    allow_methods=["*"],  # Allows all methods
    allow_headers=["*"],  # Allows all headers
)

# Initialize MongoDB
mongodb = MongoDBStore(settings.MONGODB_URI)

# Initialize core components
doc_processor = DocumentProcessor()
summarizer = ConversationSummarizer()
document_service = DocumentService(doc_processor, mongodb)

# Create uploads directory if it doesn't exist
UPLOADS_DIR = Path("uploads")
UPLOADS_DIR.mkdir(exist_ok=True)

# Mount the uploads directory for static file serving
app.mount("/docs", StaticFiles(directory=str(UPLOADS_DIR)), name="documents")

@app.get("/documents")
async def get_all_documents():
    """Get all documents from MongoDB"""
    try:
        documents = await mongodb.get_all_documents()
        
        formatted_documents = []
        for doc in documents:
            try:
                formatted_doc = {
                    "document_id": doc.get("document_id"),
                    "filename": doc.get("filename"),
                    "content_type": doc.get("content_type"),
                    "file_size": doc.get("file_size"),
                    "url_path": doc.get("url_path"),
                    "upload_timestamp": doc.get("upload_timestamp")
                }
                formatted_documents.append(formatted_doc)
            except Exception as e:
                logger.error(f"Error formatting document {doc.get('document_id', 'unknown')}: {str(e)}")
                continue
        
        return {
            "total_documents": len(formatted_documents),
            "documents": formatted_documents
        }
    except Exception as e:
        logger.error(f"Error retrieving documents: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/documents/{document_id}/download")
async def get_document_file(document_id: str):
    """Serve a document file by its ID"""
    try:
        # Get document info from MongoDB
        doc = await mongodb.get_document(document_id)
        if not doc:
            raise HTTPException(status_code=404, detail="Document not found")
        
        # Extract filename from url_path
        filename = doc["url_path"].split("/")[-1]
        file_path = UPLOADS_DIR / filename
        
        if not file_path.exists():
            raise HTTPException(
                status_code=404, 
                detail=f"File not found on server: {filename}"
            )
            
        return FileResponse(
            path=str(file_path),
            filename=doc["filename"],
            media_type=doc["content_type"]
        )
            
    except Exception as e:
        logger.error(f"Error serving document file: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/documents/upload", response_model=BatchUploadResponse)
async def upload_documents(
    files: List[UploadFile] = File(...),
    background_tasks: BackgroundTasks = BackgroundTasks()
):
    """Upload and process multiple documents"""
    try:
        vector_store, _ = await get_vector_store()
        response = await document_service.process_documents(
            files, 
            vector_store, 
            background_tasks
        )
        return response
    except Exception as e:
        logger.error(f"Error in document upload: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))    

@app.get("/documentchunks/{document_id}")
async def get_document_chunks(document_id: str):
    """Get all chunks for a specific document"""
    try:
        vector_store, _ = await get_vector_store()
        chunks = vector_store.get_document_chunks(document_id)
        
        if not chunks:
            raise HTTPException(status_code=404, detail="Document not found")
            
        return {
            "document_id": document_id,
            "total_chunks": len(chunks),
            "chunks": chunks
        }
    except Exception as e:
        logger.error(f"Error retrieving document chunks: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.delete("/documents/{document_id}")
async def delete_document(document_id: str):
    """Delete document from MongoDB, ChromaDB, and physical storage"""
    try:
        # First get document details from MongoDB to get file path
        document = await mongodb.get_document(document_id)
        if not document:
            raise HTTPException(status_code=404, detail="Document not found")
        
        # Get vector store instance
        vector_store, _ = await get_vector_store()
        
        # Delete physical file using document service
        deletion_success = await document_service.delete_document(document_id)
        if not deletion_success:
            logger.warning(f"Failed to delete physical file for document {document_id}")
            
        # Delete from vector store
        try:
            vector_store.delete_document(document_id)
        except Exception as e:
            logger.error(f"Error deleting document from vector store: {str(e)}")
            raise HTTPException(
                status_code=500, 
                detail=f"Failed to delete document from vector store: {str(e)}"
            )
            
        # Delete from MongoDB - don't check return value since document might already be deleted
        await mongodb.delete_document(document_id)
        
        return {
            "status": "success",
            "message": f"Document {document_id} successfully deleted from all stores"
        }
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in delete_document endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))
    
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(
    request: ChatRequest,
    background_tasks: BackgroundTasks
):
    """Chat endpoint with RAG support"""
    try:
        vector_store, embedding_model = await get_vector_store()
        llm = get_llm_instance(request.llm_provider)
        
        # Initialize RAG agent with required MongoDB
        rag_agent = RAGAgent(
            llm=llm,
            embedding=embedding_model,
            vector_store=vector_store,
            mongodb=mongodb
        )
        
        # Use provided conversation ID or create new one
        conversation_id = request.conversation_id or str(uuid.uuid4())
        query = request.query + ". The response should be short and to the point. make sure, to not add any irrelevant information. Stick to the point is very very important."
        # Generate response
        response = await rag_agent.generate_response(
            query=query,
            conversation_id=conversation_id,
            temperature=request.temperature
        )
        
        # Store message in chat history
        await mongodb.store_message(
            conversation_id=conversation_id,
            query=request.query,
            response=response.response,
            context=response.context_docs,
            sources=response.sources,
            llm_provider=request.llm_provider
        )
        
        return ChatResponse(
            response=response.response,
            context=response.context_docs,
            sources=response.sources,
            conversation_id=conversation_id,
            timestamp=datetime.now(),
            relevant_doc_scores=response.scores if hasattr(response, 'scores') else None
        )
        
    except Exception as e:
        logger.error(f"Error in chat endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/chat/history/{conversation_id}")
async def get_conversation_history(conversation_id: str):
    """Get complete conversation history"""
    history = await mongodb.get_conversation_history(conversation_id)
    
    if not history:
        raise HTTPException(status_code=404, detail="Conversation not found")
        
    return {
        "conversation_id": conversation_id,
        "messages": history
    }

@app.post("/chat/summarize", response_model=SummaryResponse)
async def summarize_conversation(request: SummarizeRequest):
    """Generate a summary of a conversation"""
    try:
        messages = await mongodb.get_messages_for_summary(request.conversation_id)
        
        if not messages:
            raise HTTPException(status_code=404, detail="Conversation not found")
        
        summary = await summarizer.summarize_conversation(
            messages,
            include_metadata=request.include_metadata
        )
        
        return SummaryResponse(**summary)
        
    except Exception as e:
        logger.error(f"Error generating summary: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/chat/feedback/{conversation_id}")
async def submit_feedback(
    conversation_id: str,
    feedback_request: FeedbackRequest
):
    """Submit feedback for a conversation"""
    try:
        # Validate conversation exists
        conversation = await mongodb.get_conversation_metadata(conversation_id)
        if not conversation:
            raise HTTPException(status_code=404, detail="Conversation not found")
        
        # Update feedback
        success = await mongodb.update_feedback(
            conversation_id=conversation_id,
            feedback=feedback_request.feedback,
            rating=feedback_request.rating
        )
        
        if not success:
            raise HTTPException(
                status_code=500,
                detail="Failed to update feedback"
            )
            
        return {
            "status": "success",
            "message": "Feedback submitted successfully",
            "data": {
                "conversation_id": conversation_id,
                "feedback": feedback_request.feedback,
                "rating": feedback_request.format_rating()
            }
        }
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error submitting feedback: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/debug/config")
async def debug_config():
    """Debug endpoint to check configuration"""
    import os
    from config.config import settings
    from pathlib import Path
    
    debug_info = {
        "environment_variables": {
            "OPENAI_API_KEY": "[SET]" if os.getenv('OPENAI_API_KEY') else "[NOT SET]",
            "OPENAI_MODEL": os.getenv('OPENAI_MODEL', '[NOT SET]')
        },
        "settings": {
            "OPENAI_API_KEY": "[SET]" if settings.OPENAI_API_KEY else "[NOT SET]",
            "OPENAI_MODEL": settings.OPENAI_MODEL,
        },
        "files": {
            "env_file_exists": Path('.env').exists(),
            "openai_config_exists": (Path.home() / '.openai' / 'api_key').exists()
        }
    }
    
    if settings.OPENAI_API_KEY:
        key = settings.OPENAI_API_KEY
        debug_info["api_key_info"] = {
            "length": len(key),
            "preview": f"{key[:4]}...{key[-4:]}" if len(key) > 8 else "[INVALID LENGTH]"
        }
        
    return debug_info

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    return {"status": "healthy"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)