Spaces:
Running
Running
File size: 25,471 Bytes
640b1c8 5bfdeda 415595f e9d730a 4daad35 9700f95 e9d730a e87abff 4daad35 aee2bfd 415595f aee2bfd 640b1c8 3ea83cb 415595f b953016 640b1c8 4daad35 640b1c8 9700f95 415595f 1a54bda 9700f95 415595f aee2bfd d161383 e87abff 4daad35 e87abff d161383 e87abff 4daad35 b953016 415595f b953016 415595f aee2bfd 4daad35 415595f 4daad35 acdfaa9 4daad35 415595f 4daad35 37a7e05 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f e87abff e9d730a 415595f e9d730a e87abff e9d730a e87abff 415595f d161383 aee2bfd d161383 415595f d161383 415595f d161383 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 415595f 4daad35 b953016 415595f aee2bfd 415595f aee2bfd acdfaa9 aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f b953016 415595f b953016 aee2bfd b953016 415595f b953016 aee2bfd b953016 415595f b953016 415595f b953016 415595f e87abff b953016 e87abff b953016 415595f e87abff 415595f b953016 e87abff 415595f e87abff 415595f 9700f95 640b1c8 415595f 9700f95 415595f b953016 415595f b953016 415595f 9700f95 b953016 415595f b953016 415595f b953016 415595f b953016 415595f b953016 415595f b953016 9700f95 e9d730a 640b1c8 b953016 e87abff 415595f b953016 640b1c8 b953016 415595f b953016 640b1c8 b953016 415595f b953016 e87abff 415595f e87abff e9d730a 415595f e9d730a 415595f e9d730a e87abff 415595f e87abff e9d730a 415595f e9d730a 415595f e87abff 415595f e87abff 415595f e87abff 415595f e87abff 9700f95 415595f 9700f95 e9d730a 415595f e9d730a 9700f95 415595f 9700f95 415595f 9700f95 e87abff 640b1c8 415595f 0739c8b 415595f 0739c8b 415595f 0739c8b 415595f 0739c8b 415595f b953016 415595f b953016 415595f b953016 415595f b953016 415595f b953016 415595f 640b1c8 e87abff 5bfdeda e87abff 5bfdeda e87abff 5bfdeda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
# src/main.py
import uvicorn
from config.config import settings
from src.utils.database_cleanup import perform_cleanup
from fastapi.security import APIKeyHeader
from fastapi import HTTPException, Depends
from fastapi.responses import JSONResponse
from src.models import (
ChatRequest,
ChatResponse,
BatchUploadResponse,
SummarizeRequest,
SummaryResponse,
FeedbackRequest
)
from src.implementations.document_service import DocumentService
from src.db.mongodb_store import MongoDBStore
from src.utils.llm_utils import get_llm_instance, get_vector_store
from src.utils.logger import logger
from src.utils.conversation_summarizer import ConversationSummarizer
from src.utils.drive_document_processor import DriveDocumentProcessor
from src.utils.document_processor import DocumentProcessor
from src.models.UserContact import UserContactRequest
from src.models.document import AllDocumentsResponse, StoredDocument
from src.agents.system_instructions_rag import SystemInstructionsRAGAgent
from src.utils.google_drive_service import GoogleDriveService
from google_auth_oauthlib.flow import Flow
from google.oauth2.credentials import Credentials
from fastapi.responses import RedirectResponse
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware # Add this import
from typing import List
import uuid
from datetime import datetime
from pathlib import Path
import os
import asyncio
import chromadb
from pathlib import Path
import asyncio
import gc
import random
from typing import List
from src.utils.logger import logger
from config.config import settings
os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1'
# os.environ["OAUTHLIB_RELAX_TOKEN_SCOPE"] = "1"
# Import custom modules1
# from src.agents.rag_agent import RAGAgent
app = FastAPI(title="Chatbot API")
app.add_middleware(
CORSMiddleware,
allow_origins=["http://localhost:8080",
"http://localhost:3000", "https://chatbot-react-frontend.onrender.com", "https://chatbot.neurovise.ai"], # Add both ports
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# google_drive_service = GoogleDriveService()
# Initialize MongoDB
mongodb = MongoDBStore(settings.MONGODB_URI)
# Initialize core components
doc_processor = DocumentProcessor()
summarizer = ConversationSummarizer()
document_service = DocumentService(doc_processor, mongodb)
# Create uploads directory if it doesn't exist
UPLOADS_DIR = Path("uploads")
UPLOADS_DIR.mkdir(exist_ok=True)
# Mount the uploads directory for static file serving
app.mount("/docs", StaticFiles(directory=str(UPLOADS_DIR)), name="documents")
# Security setup
API_KEY_HEADER = APIKeyHeader(name="ADMIN_API_KEY")
async def verify_api_key(api_key: str = Depends(API_KEY_HEADER)):
"""Verify admin API key"""
if not settings.ADMIN_API_KEY or api_key != settings.ADMIN_API_KEY:
raise HTTPException(
status_code=403,
detail="Invalid or missing API key"
)
return api_key
def get_chroma_client():
"""Get a new ChromaDB client instance"""
return chromadb.PersistentClient(
path=settings.CHROMA_PATH,
settings=chromadb.Settings(
allow_reset=True,
is_persistent=True
)
)
@app.get("/documents")
async def get_all_documents():
"""Get all documents from MongoDB"""
try:
documents = await mongodb.get_all_documents()
formatted_documents = []
for doc in documents:
try:
formatted_doc = {
"document_id": doc.get("document_id"),
"filename": doc.get("filename"),
"content_type": doc.get("content_type"),
"file_size": doc.get("file_size"),
"url_path": doc.get("url_path"),
"upload_timestamp": doc.get("upload_timestamp"),
"source": doc.get("source")
}
formatted_documents.append(formatted_doc)
except Exception as e:
logger.error(
f"Error formatting document {doc.get('document_id', 'unknown')}: {str(e)}")
continue
# Sort documents by upload_timestamp in descending order (latest first)
formatted_documents.sort(
key=lambda x: x.get("upload_timestamp", datetime.min),
reverse=True
)
return {
"total_documents": len(formatted_documents),
"documents": formatted_documents
}
except Exception as e:
logger.error(f"Error retrieving documents: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/documents/{document_id}/download")
async def get_document_file(document_id: str):
"""Serve a document file by its ID"""
try:
# Get document info from MongoDB
doc = await mongodb.get_document(document_id)
if not doc:
raise HTTPException(status_code=404, detail="Document not found")
# Extract filename from url_path
filename = doc["url_path"].split("/")[-1]
file_path = UPLOADS_DIR / filename
if not file_path.exists():
raise HTTPException(
status_code=404,
detail=f"File not found on server: {filename}"
)
return FileResponse(
path=str(file_path),
filename=doc["filename"],
media_type=doc["content_type"]
)
except Exception as e:
logger.error(f"Error serving document file: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", response_model=BatchUploadResponse)
async def upload_documents(
files: List[UploadFile] = File(...),
background_tasks: BackgroundTasks = BackgroundTasks()
):
"""Upload and process multiple documents"""
try:
vector_store, _ = await get_vector_store()
response = await document_service.process_documents(
files,
vector_store,
background_tasks
)
return response
except Exception as e:
logger.error(f"Error in document upload: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/documentChunks")
async def get_all_document_chunks():
"""Get all document chunks from the vector store"""
try:
# Get vector store instance
vector_store, _ = await get_vector_store()
# Retrieve all documents
all_documents = vector_store.get_all_documents()
# If no documents, return a structured response instead of raising an exception
if not all_documents:
return {
"total_documents": 0,
"documents": [],
"message": "No documents are currently stored in the vector store. Upload some documents to see chunks."
}
# Group chunks by document_id
document_chunks = {}
for doc in all_documents:
# Safely extract document_id
document_id = doc.get('metadata', {}).get('document_id',
doc.get('id',
str(uuid.uuid4())))
# Ensure metadata is a dictionary
metadata = doc.get('metadata', {}) if isinstance(
doc.get('metadata'), dict) else {}
# Create chunk entry
chunk = {
'text': str(doc.get('text', '')),
'metadata': metadata
}
# Group chunks by document_id
if document_id not in document_chunks:
document_chunks[document_id] = []
document_chunks[document_id].append(chunk)
# Prepare response
processed_documents = []
for doc_id, chunks in document_chunks.items():
processed_documents.append({
"document_id": doc_id,
"total_chunks": len(chunks),
"chunks": chunks
})
return {
"total_documents": len(processed_documents),
"documents": processed_documents,
"message": f"Successfully retrieved {len(processed_documents)} documents"
}
except Exception as e:
# Log the full error for debugging
logger.error(
f"Error retrieving all document chunks: {str(e)}", exc_info=True)
# Return a structured error response
return {
"total_documents": 0,
"documents": [],
"message": f"An error occurred while retrieving document chunks: {str(e)}"
}
@app.get("/documentChunks/{document_id}")
async def get_document_chunks(document_id: str):
"""Get all chunks for a specific document"""
try:
vector_store, _ = await get_vector_store()
chunks = vector_store.get_document_chunks(document_id)
if not chunks:
raise HTTPException(status_code=404, detail="Document not found")
return {
"document_id": document_id,
"total_chunks": len(chunks),
"chunks": chunks
}
except Exception as e:
logger.error(f"Error retrieving document chunks: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.delete("/documents/{document_id}")
async def delete_document(document_id: str):
"""Delete document from MongoDB, ChromaDB, and physical storage"""
try:
# First get document details from MongoDB to get file path
document = await mongodb.get_document(document_id)
# if not document:
# raise HTTPException(status_code=404, detail="Document not found")
# Get vector store instance
vector_store, _ = await get_vector_store()
# Delete physical file using document service
deletion_success = await document_service.delete_document(document_id)
if not deletion_success:
logger.warning(
f"Failed to delete physical file for document {document_id}")
# Delete from vector store
try:
vector_store.delete_document(document_id)
except Exception as e:
logger.error(
f"Error deleting document from vector store: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Failed to delete document from vector store: {str(e)}"
)
# Delete from MongoDB - don't check return value since document might already be deleted
await mongodb.delete_document(document_id)
return {
"status": "success",
"message": f"Document {document_id} successfully deleted from all stores"
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in delete_document endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/processDriveDocuments")
async def process_drive_documents():
try:
# Initialize vector store
vector_store, _ = await get_vector_store()
# Initialize Drive document processor
drive_processor = DriveDocumentProcessor(
google_service_account_path=settings.GOOGLE_SERVICE_ACCOUNT_PATH,
folder_id=settings.GOOGLE_DRIVE_FOLDER_ID,
temp_dir=settings.TEMP_DOWNLOAD_DIR,
doc_processor=doc_processor,
mongodb=mongodb # Add MongoDB instance
)
# Process documents
result = await drive_processor.process_documents(vector_store)
return result
except Exception as e:
logger.error(f"Error in process_drive_documents: {str(e)}")
raise HTTPException(
status_code=500,
detail=str(e)
)
@app.post("/user/contact", response_model=ChatResponse)
async def create_user_contact(
request: UserContactRequest,
background_tasks: BackgroundTasks
):
"""Create or retrieve user conversation based on contact information"""
try:
# Check for existing user
existing_conversation_id = await mongodb.find_existing_user(
email=request.email,
phone_number=request.phone_number
)
if existing_conversation_id:
chat_request = ChatRequest(
query=f'An old user with name: "{request.full_name}", email: "{request.email}" and phone number: "{request.phone_number}" wants support again. This is Introduction Create a welcome back message for him and ask how i can help you today?',
llm_provider="openai",
max_context_docs=3,
temperature=1.0,
stream=False,
conversation_id=existing_conversation_id
)
else:
# Create new conversation with user information
new_conversation_id = str(uuid.uuid4())
await mongodb.create_conversation(
conversation_id=new_conversation_id,
full_name=request.full_name,
email=request.email,
phone_number=request.phone_number
)
chat_request = ChatRequest(
query=f'A new user with name: "{request.full_name}", email: "{request.email}" and phone number: "{request.phone_number}" wants support. This is Introduction Create a welcome message for him and ask how i can help you today?',
llm_provider="openai",
max_context_docs=3,
temperature=1.0,
stream=False,
conversation_id=new_conversation_id
)
# Call chat_endpoint with the prepared request
return await chat_endpoint(chat_request, background_tasks)
except Exception as e:
logger.error(f"Error in create_user_contact: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(
request: ChatRequest,
background_tasks: BackgroundTasks
):
"""Chat endpoint with RAG support and enhanced Excel handling"""
try:
# Initialize core components
logger.info(
f"Initializing vector store and embedding: {str(datetime.now())}")
vector_store, embedding_model = await get_vector_store()
logger.info(f"Initializing LLM: {str(datetime.now())}")
llm = get_llm_instance(request.llm_provider)
# Initialize RAG agent
# rag_agent = RAGAgent(
# llm=llm,
# embedding=embedding_model,
# vector_store=vector_store,
# mongodb=mongodb
# )
rag_agent = SystemInstructionsRAGAgent(
llm=llm,
embedding=embedding_model,
vector_store=vector_store,
mongodb=mongodb
)
# rag_agent.add_custom_role(
# "Knowledge based chatbot and introduction specialist",
# """You are a welcome agent with knowledge based specialist focusing on knowledge attached and create a beautiful welcome message.
# Your role is to:
# 1. Your response should be short and to the point.
# 2. Strictly follow this point for If it is an introduction. You strictly respond that "Welcome name of customer to our platform. How can I help you today?"
# """
# )
# rag_agent.add_custom_role(
# "Knowledge based chatbot",
# """You are a knowledge based specialist focusing on knowledge attached.
# Your role is to:
# 1. Your response should be short and to the point.
# 2. if it is not introduction then make sure to share the response from Vector store.
# 3. If you do not find relevant information. Just say I do not have this information but this do not apply to introduction message.
# 4. If there is an introduction, you should ignore above roles and connect with LLm to have a welcome message for the user.
# """
# )
# Use provided conversation ID or create new one
conversation_id = request.conversation_id or str(uuid.uuid4())
# Process the query
query = request.query
# Add specific instructions for certain types of queries
# if "introduce" in query.lower() or "name" in query.lower() or "email" in query.lower():
# query += ". The response should be short and to the point. Make sure to not add any irrelevant information. make sure to share the response from Vector store, if you do not find information in vector store. Just respond I do not have information. Keep the introduction concise and friendly."
# Generate response
logger.info(f"Generating response: {str(datetime.now())}")
max_retries = 3
retry_count = 0
response = None
last_error = None
while retry_count < max_retries and response is None:
try:
response = await rag_agent.generate_response(
query=query,
conversation_id=conversation_id,
temperature=request.temperature,
max_tokens=request.max_tokens if hasattr(
request, 'max_tokens') else None
)
break
except Exception as e:
last_error = e
retry_count += 1
logger.warning(f"Attempt {retry_count} failed: {str(e)}")
await asyncio.sleep(1) # Brief pause before retry
if response is None:
raise last_error or Exception(
"Failed to generate response after retries")
logger.info(f"Response generated: {str(datetime.now())}")
# Prepare response metadata
metadata = {
'llm_provider': request.llm_provider,
'temperature': request.temperature,
'conversation_id': conversation_id
}
# Add Excel-specific metadata if present
has_excel_content = any(
doc and 'Sheet:' in doc
for doc in (response.context_docs or [])
)
if has_excel_content:
try:
metadata['excel_content'] = True
# Extract Excel-specific insights if available
if hasattr(rag_agent, 'get_excel_insights'):
excel_insights = rag_agent.get_excel_insights(
query=query,
context_docs=response.context_docs
)
if excel_insights:
metadata['excel_insights'] = excel_insights
except Exception as e:
logger.warning(f"Error processing Excel metadata: {str(e)}")
# Store message in chat history
await mongodb.store_message(
conversation_id=conversation_id,
query=request.query,
response=response.response,
context=response.context_docs,
sources=response.sources,
llm_provider=request.llm_provider
)
# Prepare and return response
chat_response = ChatResponse(
response=response.response,
context=response.context_docs,
sources=response.sources,
conversation_id=conversation_id,
timestamp=datetime.now(),
relevant_doc_scores=response.scores if hasattr(
response, 'scores') else None,
metadata=metadata
)
# Log completion
logger.info(f"Chat response completed: {str(datetime.now())}")
return chat_response
except Exception as e:
logger.error(f"Error in chat endpoint: {str(e)}", exc_info=True)
# Convert known errors to HTTPException with appropriate status codes
if isinstance(e, ValueError):
raise HTTPException(status_code=400, detail=str(e))
elif isinstance(e, (KeyError, AttributeError)):
raise HTTPException(
status_code=500, detail="Internal processing error")
else:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/chat/history/{conversation_id}")
async def get_conversation_history(conversation_id: str):
"""Get complete conversation history"""
history = await mongodb.get_conversation_history(conversation_id)
if not history:
raise HTTPException(status_code=404, detail="Conversation not found")
return {
"conversation_id": conversation_id,
"messages": history
}
@app.post("/chat/summarize", response_model=SummaryResponse)
async def summarize_conversation(request: SummarizeRequest):
"""Generate a summary of a conversation"""
try:
messages = await mongodb.get_messages_for_summary(request.conversation_id)
if not messages:
raise HTTPException(
status_code=404, detail="Conversation not found")
summary = await summarizer.summarize_conversation(
messages,
include_metadata=request.include_metadata
)
return SummaryResponse(**summary)
except Exception as e:
logger.error(f"Error generating summary: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat/feedback/{conversation_id}")
async def submit_feedback(
conversation_id: str,
feedback_request: FeedbackRequest
):
"""Submit feedback for a conversation"""
try:
# Validate conversation exists
conversation = await mongodb.get_conversation_metadata(conversation_id)
if not conversation:
raise HTTPException(
status_code=404, detail="Conversation not found")
# Update feedback
success = await mongodb.update_feedback(
conversation_id=conversation_id,
feedback=feedback_request.feedback,
rating=feedback_request.rating
)
if not success:
raise HTTPException(
status_code=500,
detail="Failed to update feedback"
)
return {
"status": "success",
"message": "Feedback submitted successfully",
"data": {
"conversation_id": conversation_id,
"feedback": feedback_request.feedback,
"rating": feedback_request.format_rating()
}
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error submitting feedback: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/debug/config")
async def debug_config():
"""Debug endpoint to check configuration"""
import os
from config.config import settings
from pathlib import Path
debug_info = {
"environment_variables": {
"OPENAI_API_KEY": "[SET]" if os.getenv('OPENAI_API_KEY') else "[NOT SET]",
"OPENAI_MODEL": os.getenv('OPENAI_MODEL', '[NOT SET]')
},
"settings": {
"OPENAI_API_KEY": "[SET]" if settings.OPENAI_API_KEY else "[NOT SET]",
"OPENAI_MODEL": settings.OPENAI_MODEL,
},
"files": {
"env_file_exists": Path('.env').exists(),
"openai_config_exists": (Path.home() / '.openai' / 'api_key').exists()
}
}
if settings.OPENAI_API_KEY:
key = settings.OPENAI_API_KEY
debug_info["api_key_info"] = {
"length": len(key),
"preview": f"{key[:4]}...{key[-4:]}" if len(key) > 8 else "[INVALID LENGTH]"
}
return debug_info
@app.post("/admin/cleanup")
async def cleanup_databases(
include_files: bool = True,
api_key: str = Depends(verify_api_key)
):
"""
Clean up all data from ChromaDB and MongoDB
Args:
include_files (bool): Whether to also delete uploaded files
Returns:
Dict: Cleanup operation summary with restart information
"""
try:
result = await perform_cleanup(mongodb, include_files)
# If restart is needed, return 202 Accepted instead of 200 OK
if result.get("restart_needed"):
return JSONResponse(
status_code=202,
content={
**result,
"message": "Cleanup partially completed. Please restart the server to complete ChromaDB cleanup."
}
)
return result
except Exception as e:
logger.error(f"Error in cleanup operation: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Error during cleanup: {str(e)}"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy"}
if __name__ == "__main__":
import os
import uvicorn
# Get port from environment variable or default to 8000
port = int(os.getenv("PORT", 8000))
# Run the application
uvicorn.run(
"src.main:app",
host="0.0.0.0",
port=port,
reload=False # Set to False for production
)
|