Spaces:
Running
Running
Enhanced the support for the excel file and added endpoint to have optimized vector store and Rag for the Excel.
b953016
# src/utils/document_processor.py | |
from typing import List, Dict, Optional, Union | |
import PyPDF2 | |
import docx | |
import pandas as pd | |
import json | |
from pathlib import Path | |
import hashlib | |
import magic # python-magic library for file type detection | |
from bs4 import BeautifulSoup | |
import csv | |
from datetime import datetime | |
import threading | |
from queue import Queue | |
import tiktoken | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import logging | |
from bs4.element import ProcessingInstruction | |
from .enhanced_excel_processor import EnhancedExcelProcessor | |
class DocumentProcessor: | |
def __init__( | |
self, | |
chunk_size: int = 1000, | |
chunk_overlap: int = 200, | |
max_file_size: int = 10 * 1024 * 1024, # 10MB | |
supported_formats: Optional[List[str]] = None | |
): | |
self.chunk_size = chunk_size | |
self.chunk_overlap = chunk_overlap | |
self.max_file_size = max_file_size | |
self.supported_formats = supported_formats or [ | |
'.txt', '.pdf', '.docx', '.csv', '.json', | |
'.html', '.md', '.xml', '.rtf', '.xlsx', '.xls' | |
] | |
self.processing_queue = Queue() | |
self.processed_docs = {} | |
self._initialize_text_splitter() | |
# Initialize Excel processor | |
self.excel_processor = EnhancedExcelProcessor() | |
# Check for required packages | |
try: | |
import striprtf.striprtf | |
except ImportError: | |
logging.warning("Warning: striprtf package not found. RTF support will be limited.") | |
try: | |
from bs4 import BeautifulSoup | |
import lxml | |
except ImportError: | |
logging.warning("Warning: beautifulsoup4 or lxml package not found. XML support will be limited.") | |
def _initialize_text_splitter(self): | |
"""Initialize the text splitter with custom settings""" | |
self.text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=self.chunk_size, | |
chunk_overlap=self.chunk_overlap, | |
length_function=len, | |
separators=["\n\n", "\n", " ", ""] | |
) | |
def _extract_content(self, file_path: Path) -> str: | |
"""Extract content from different file formats""" | |
suffix = file_path.suffix.lower() | |
try: | |
if suffix == '.pdf': | |
return self._extract_pdf(file_path) | |
elif suffix == '.docx': | |
return self._extract_docx(file_path) | |
elif suffix == '.csv': | |
return self._extract_csv(file_path) | |
elif suffix == '.json': | |
return self._extract_json(file_path) | |
elif suffix == '.html': | |
return self._extract_html(file_path) | |
elif suffix == '.txt' or suffix == '.md': | |
return self._extract_text(file_path) | |
elif suffix == '.xml': | |
return self._extract_xml(file_path) | |
elif suffix == '.rtf': | |
return self._extract_rtf(file_path) | |
elif suffix in ['.xlsx', '.xls']: | |
return self._extract_excel(file_path) | |
else: | |
raise ValueError(f"Unsupported format: {suffix}") | |
except Exception as e: | |
raise Exception(f"Error extracting content from {file_path}: {str(e)}") | |
def _extract_text(self, file_path: Path) -> str: | |
"""Extract content from text-based files""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
return f.read() | |
except UnicodeDecodeError: | |
with open(file_path, 'r', encoding='latin-1') as f: | |
return f.read() | |
def _extract_pdf(self, file_path: Path) -> str: | |
"""Extract text from PDF with advanced features""" | |
text = "" | |
with open(file_path, 'rb') as file: | |
reader = PyPDF2.PdfReader(file) | |
metadata = reader.metadata | |
for page in reader.pages: | |
text += page.extract_text() + "\n\n" | |
# Extract images if available | |
if '/XObject' in page['/Resources']: | |
for obj in page['/Resources']['/XObject'].get_object(): | |
if page['/Resources']['/XObject'][obj]['/Subtype'] == '/Image': | |
pass | |
return text.strip() | |
def _extract_docx(self, file_path: Path) -> str: | |
"""Extract text from DOCX with formatting""" | |
doc = docx.Document(file_path) | |
full_text = [] | |
for para in doc.paragraphs: | |
full_text.append(para.text) | |
for table in doc.tables: | |
for row in table.rows: | |
row_text = [cell.text for cell in row.cells] | |
full_text.append(" | ".join(row_text)) | |
return "\n\n".join(full_text) | |
def _extract_csv(self, file_path: Path) -> str: | |
"""Convert CSV to structured text""" | |
df = pd.read_csv(file_path) | |
return df.to_string() | |
def _extract_json(self, file_path: Path) -> str: | |
"""Convert JSON to readable text""" | |
with open(file_path) as f: | |
data = json.load(f) | |
return json.dumps(data, indent=2) | |
def _extract_html(self, file_path: Path) -> str: | |
"""Extract text from HTML with structure preservation""" | |
with open(file_path) as f: | |
soup = BeautifulSoup(f, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.decompose() | |
text = soup.get_text(separator='\n') | |
lines = [line.strip() for line in text.splitlines() if line.strip()] | |
return "\n\n".join(lines) | |
def _extract_xml(self, file_path: Path) -> str: | |
"""Extract text from XML with structure preservation""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
soup = BeautifulSoup(f, 'xml') | |
for pi in soup.find_all(text=lambda text: isinstance(text, ProcessingInstruction)): | |
pi.extract() | |
text = soup.get_text(separator='\n') | |
lines = [line.strip() for line in text.splitlines() if line.strip()] | |
return "\n\n".join(lines) | |
except Exception as e: | |
raise Exception(f"Error processing XML file: {str(e)}") | |
def _extract_rtf(self, file_path: Path) -> str: | |
"""Extract text from RTF files""" | |
try: | |
import striprtf.striprtf as striprtf | |
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: | |
rtf_text = f.read() | |
plain_text = striprtf.rtf_to_text(rtf_text) | |
lines = [line.strip() for line in plain_text.splitlines() if line.strip()] | |
return "\n\n".join(lines) | |
except ImportError: | |
raise ImportError("striprtf package is required for RTF support.") | |
except Exception as e: | |
raise Exception(f"Error processing RTF file: {str(e)}") | |
def _extract_excel(self, file_path: Path) -> str: | |
"""Extract content from Excel files with enhanced processing""" | |
try: | |
# Use enhanced Excel processor | |
processed_content = self.excel_processor.process_excel(file_path) | |
# If processing fails, fall back to basic processing | |
if not processed_content: | |
logging.warning(f"Enhanced Excel processing failed for {file_path}, falling back to basic processing") | |
return self._basic_excel_extract(file_path) | |
return processed_content | |
except Exception as e: | |
logging.error(f"Error in enhanced Excel processing: {str(e)}") | |
# Fall back to basic Excel processing | |
return self._basic_excel_extract(file_path) | |
def _basic_excel_extract(self, file_path: Path) -> str: | |
"""Basic Excel extraction as fallback""" | |
try: | |
excel_file = pd.ExcelFile(file_path) | |
sheets_data = [] | |
for sheet_name in excel_file.sheet_names: | |
df = pd.read_excel(excel_file, sheet_name=sheet_name) | |
sheet_content = f"\nSheet: {sheet_name}\n" | |
sheet_content += "=" * (len(sheet_name) + 7) + "\n" | |
if df.empty: | |
sheet_content += "Empty Sheet\n" | |
else: | |
sheet_content += df.fillna('').to_string( | |
index=False, | |
max_rows=None, | |
max_cols=None, | |
line_width=120 | |
) + "\n" | |
sheets_data.append(sheet_content) | |
return "\n\n".join(sheets_data) | |
except Exception as e: | |
raise Exception(f"Error in basic Excel processing: {str(e)}") | |
def _generate_metadata( | |
self, | |
file_path: Path, | |
content: str, | |
additional_metadata: Optional[Dict] = None | |
) -> Dict: | |
"""Generate comprehensive metadata""" | |
file_stat = file_path.stat() | |
metadata = { | |
'filename': file_path.name, | |
'file_type': file_path.suffix, | |
'file_size': file_stat.st_size, | |
'created_at': datetime.fromtimestamp(file_stat.st_ctime), | |
'modified_at': datetime.fromtimestamp(file_stat.st_mtime), | |
'content_hash': self._calculate_hash(content), | |
'mime_type': magic.from_file(str(file_path), mime=True), | |
'word_count': len(content.split()), | |
'character_count': len(content), | |
'processing_timestamp': datetime.now().isoformat() | |
} | |
# Add Excel-specific metadata if applicable | |
if file_path.suffix.lower() in ['.xlsx', '.xls']: | |
try: | |
if hasattr(self.excel_processor, 'get_metadata'): | |
excel_metadata = self.excel_processor.get_metadata() | |
metadata.update({'excel_metadata': excel_metadata}) | |
except Exception as e: | |
logging.warning(f"Could not extract Excel metadata: {str(e)}") | |
if additional_metadata: | |
metadata.update(additional_metadata) | |
return metadata | |
def _calculate_hash(self, text: str) -> str: | |
"""Calculate SHA-256 hash of text""" | |
return hashlib.sha256(text.encode()).hexdigest() | |
async def process_document( | |
self, | |
file_path: Union[str, Path], | |
metadata: Optional[Dict] = None | |
) -> Dict: | |
"""Process a document with metadata and content extraction""" | |
file_path = Path(file_path) | |
if not self._validate_file(file_path): | |
raise ValueError(f"Invalid file: {file_path}") | |
content = self._extract_content(file_path) | |
doc_metadata = self._generate_metadata(file_path, content, metadata) | |
chunks = self.text_splitter.split_text(content) | |
chunk_hashes = [self._calculate_hash(chunk) for chunk in chunks] | |
return { | |
'content': content, | |
'chunks': chunks, | |
'chunk_hashes': chunk_hashes, | |
'metadata': doc_metadata, | |
'statistics': self._generate_statistics(content, chunks) | |
} | |
def _validate_file(self, file_path: Path) -> bool: | |
"""Validate file type, size, and content""" | |
if not file_path.exists(): | |
raise FileNotFoundError(f"File not found: {file_path}") | |
if file_path.suffix.lower() not in self.supported_formats: | |
raise ValueError(f"Unsupported file format: {file_path.suffix}") | |
if file_path.stat().st_size > self.max_file_size: | |
raise ValueError(f"File too large: {file_path}") | |
if file_path.stat().st_size == 0: | |
raise ValueError(f"Empty file: {file_path}") | |
return True | |
def _generate_statistics(self, content: str, chunks: List[str]) -> Dict: | |
"""Generate document statistics""" | |
return { | |
'total_chunks': len(chunks), | |
'average_chunk_size': sum(len(chunk) for chunk in chunks) / len(chunks), | |
'token_estimate': len(content.split()), | |
'unique_words': len(set(content.lower().split())), | |
'sentences': len([s for s in content.split('.') if s.strip()]), | |
} | |
async def batch_process( | |
self, | |
file_paths: List[Union[str, Path]], | |
parallel: bool = True | |
) -> Dict[str, Dict]: | |
"""Process multiple documents in parallel""" | |
results = {} | |
if parallel: | |
threads = [] | |
for file_path in file_paths: | |
thread = threading.Thread( | |
target=self._process_and_store, | |
args=(file_path, results) | |
) | |
threads.append(thread) | |
thread.start() | |
for thread in threads: | |
thread.join() | |
else: | |
for file_path in file_paths: | |
await self._process_and_store(file_path, results) | |
return results | |
async def _process_and_store( | |
self, | |
file_path: Union[str, Path], | |
results: Dict | |
): | |
"""Process a single document and store results""" | |
try: | |
result = await self.process_document(file_path) | |
results[str(file_path)] = result | |
except Exception as e: | |
results[str(file_path)] = {'error': str(e)} |