Tanaanan's picture
Update app.py
aea4ef2
import streamlit as st #Web App
from PIL import Image, ImageOps #Image Processing
import time
from unittest import result
from pythainlp.util import isthai
import numpy as np
import easyocr as ocr #OCR
import editdistance
from fastbook import *
from fastai.vision import *
from glob import glob
from pathlib import Path
from sklearn.metrics import precision_recall_fscore_support, accuracy_score, roc_auc_score
st.sidebar.image("./stem_logo.png")
st.sidebar.header("ATK-OCR classification (AOC) Webapp.")
activities = ["Detection", "About"]
choice = st.sidebar.selectbox("Select option..",activities)
#set default size as 1280 x 1280
def img_resize(input_path,img_size): # padding
desired_size = img_size
im = Image.open(input_path)
im = ImageOps.exif_transpose(im) # fix image rotating
width, height = im.size # get img_input size
if (width == 1280) and (height == 1280):
new_im = im
else:
#im = im.convert('L') #Convert to gray
old_size = im.size # old_size[0] is in (width, height) format
ratio = float(desired_size)/max(old_size)
new_size = tuple([int(x*ratio) for x in old_size])
im = im.resize(new_size, Image.ANTIALIAS)
new_im = Image.new("RGB", (desired_size, desired_size))
new_im.paste(im, ((desired_size-new_size[0])//2,
(desired_size-new_size[1])//2))
return new_im
checkpoint_path = "./ATK Efficientb_7 FastAI(96%).pkl"
learn_inf = load_learner(checkpoint_path)
model = learn_inf.model.eval()
def get_detection(img_path):
bytes_data = img_path.getvalue() # change fileuploader type to bytes (st.file_uploader)
pred = learn_inf.predict(bytes_data)
detect_val = ""
if pred[0] == "1_Positive":
detect_val = "Positive"
st.error("Result : {} with {}% confidence".format(detect_val, round(float(pred[2][1]*100),2)))
if pred[0] == "0_Negative":
detect_val = "Negative"
st.success("Result : {} with {}% confidence".format(detect_val, round(float(pred[2][0]*100),2)))
@st.cache
def load_model():
reader = ocr.Reader(['en'],model_storage_directory='.')
return reader
reader = load_model() #load model
def Get_Idcard_detail(file_path):
raw_data = []
id_num = {"id_num" : "None"}
name = file_path
img = Image.open(name)
img = ImageOps.exif_transpose(img) # fix image rotating
width, height = img.size # get img_input size
if (width == 1280) and (height == 1280):
result = reader.readtext(np.array(img))
else:
#im = im.convert('L') #Convert to gray
old_size = img.size # old_size[0] is in (width, height) format
ratio = float(1280)/max(old_size)
new_size = tuple([int(x*ratio) for x in old_size])
img = img.resize(new_size, Image.ANTIALIAS)
new_im = Image.new("RGB", (1280, 1280))
new_im.paste(img, ((1280-new_size[0])//2,
(1280-new_size[1])//2))
result = reader.readtext(np.array(new_im))
result_text = [] #empty list for results
for text in result:
result_text.append(text[1])
raw_data = result_text
def get_english(raw_list): # Cut only english var
eng_name = []
thai_name = []
for name in raw_list:
if isthai(name) == True:
thai_name.append(name)
else:
eng_name.append(name)
return eng_name
raw_data = get_english(raw_data)
def Clear_syntax(raw_list):
Clean_syntax = ["","#","{","}","=","/","@","#","$","—","|","%","-","(",")","¥", "[", "]", "‘",':',';']
for k in range(len(Clean_syntax)):
while (Clean_syntax[k] in raw_list): # remove single symbol
raw_list.remove(Clean_syntax[k])
for l in range(len(raw_list)):
raw_list[l] = raw_list[l].replace("!","l") #split ! --> l (Error OCR Check)
raw_list[l] = raw_list[l].replace(",",".") #split ! --> l (Error OCR Check)
raw_list[l] = raw_list[l].replace(" ","") #split " " out from str
raw_list[l] = raw_list[l].lower() #Set all string to lowercase
for m in range(len(raw_list)): #Clear symbol in str "Hi/'" --> "Hi"
for n in range(len(Clean_syntax)):
raw_list[m] = raw_list[m].replace(Clean_syntax[n],"")
return raw_list
raw_data = Clear_syntax(raw_data)
def get_idnum(raw_list):
id_num = {"id_num" : "None"}
# 1. normal check
for i in range(len(raw_list)): # check if len(list) = 1, 4, 5, 2, 1 (13 digit idcard) and all is int
try:
if ((len(raw_list[i]) == 1) and (len(raw_list[i+1]) == 4) and (len(raw_list[i+2]) == 5) and (len(raw_list[i+3]) == 2) and (len(raw_list[i+4]) == 1)) and ((raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4]).isnumeric()):
id_num["id_num"] = (raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4])
break
except:
pass
# 2. Hardcore Check
if id_num["id_num"] == "None":
id_count = 0
index_first = 0
index_end = 0
for i in range(len(raw_list)):
if id_count == 13:
index_end = i-1 #ลบ 1 index เพราะ ครบ 13 รอบก่อนหน้านี้
#print(f"index_first == {index_first} index_end == {index_end}")
#print(f"id = {raw_list[index_first:index_end+1]}")
id_num["id_num"] = ''.join(raw_list[index_first:index_end+1])
break
else:
if raw_list[i].isnumeric() == True and index_first == 0:
id_count += len(raw_list[i])
index_first = i
elif raw_list[i].isnumeric() == True and index_first != 0:
id_count += len(raw_list[i])
elif raw_list[i].isnumeric() == False:
id_count = 0
index_first = 0
return id_num
id_num = (get_idnum(raw_data))
#Complete list name check
def list_name_check(raw_list):
sum_list = raw_list
name_key = ['name', 'lastname']
#1. name_key check
if ("name" in sum_list) and ("lastname" in sum_list): # if name and lastname in list pass it!
pass
else:
for i in range(len(name_key)):
for j in range(len(sum_list)):
if (editdistance.eval(name_key[i], sum_list[j]) <= 2 ):
sum_list[j] = name_key[i]
gender_key = ["mr.", "mrs.", 'master', 'miss']
#2 gender_key check
count = 0 # check for break
for i in range(len(gender_key)):
for j in range(len(sum_list)):
if (count == 0):
try:
if (sum_list[i] == "name") or (sum_list[i] == "lastname"): # skip "name" and "lastname"
pass
else:
# mr, mrs sensitive case double check with len(gender_key) == len(keyword)
if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 and (len(gender_key[i]) == len(sum_list[j]))):
sum_list[j] = gender_key[i]
count+=1
#print(1)
elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])):
sum_list[j] = gender_key[i]
count+=1
#print(1)
except:
if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 2 and (len(gender_key[i]) == len(sum_list[j]))):
sum_list[j] = gender_key[i]
count+=1
#print(1)
elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])):
sum_list[j] = gender_key[i]
count+=1
#print(1)
else:
break
return sum_list
raw_data = list_name_check(raw_data)
#get_eng_name
def get_engname(raw_list):
get_data = raw_list
engname_list = []
name_pos = []
lastname_pos = []
mr_pos = []
mrs_pos = []
# check keyword by name, lastname, master, mr, miss, mrs
for j in range(len(get_data)): #get "name" , "lastname" index
if "name" == get_data[j]:
name_pos.append(j)
elif "lastname" == get_data[j]:
lastname_pos.append(j)
elif ("mr." == get_data[j]) or ("master" == get_data[j]):
mr_pos.append(j)
elif ("miss" == get_data[j]) or ("mrs." == get_data[j]):
mrs_pos.append(j)
if len(name_pos) != 0: #get_engname ex --> ['name', 'master', 'tanaanan', 'lastname', 'chalermpan']
engname_list = get_data[name_pos[0]:name_pos[0]+6] # select first index กรณีมี "name" มากกว่า 1 ตัว
elif len(lastname_pos) != 0:
engname_list = get_data[lastname_pos[0]-3:lastname_pos[0]+3]
elif len(mr_pos) != 0:
engname_list = get_data[mr_pos[0]-1:mr_pos[0]+5]
elif len(mrs_pos) != 0:
engname_list = get_data[mrs_pos[0]-1:mrs_pos[0]+5]
else:
print("Can't find eng name!!")
return engname_list
raw_data = get_engname(raw_data)
def split_genkey(raw_list): # remove stringname + gender_key ex. "missjate" -> "jate"
data = raw_list
key = ['mrs.','mr.','master','miss']
name = "" #gen_key name
name_pos = 0
gen_index = 0
gen_type = "" #male / female
# check keyword
for key_val in key:
for each_text in data:
if (each_text[:len(key_val)] == key_val) or (editdistance.eval(each_text[:len(key_val)],key_val) <= 1 and (len(each_text[:len(key_val)]) == len(key_val))):
#each_text = each_text[len(key):]
if (each_text == "name") or (each_text == "lastname"):
pass
else:
name = (each_text[:len(key_val)])
name_pos = data.index(each_text) # get_index
gen_index = len(key_val)
break
if (name_pos != 0):
data[name_pos] = data[name_pos][gen_index:] # split gender_key on list
for empty_str in range(data.count('')): # clear "empty string"
data.remove('')
return data
raw_data = split_genkey(raw_data)
def clean_name_data(raw_list): # delete all single string and int string
for k in range(len(raw_list)):
try:
while ((len(raw_list[k]) <= 2) or (raw_list[k].isnumeric() == True)): # remove single symbol
raw_list.remove(raw_list[k])
except IndexError:
pass
return raw_list
raw_data = clean_name_data(raw_data)
def name_sum(raw_list):
info = {"name" : "None",
"lastname" : "None"}
key = ['mr.','mrs.', 'master', 'miss', 'mrs','mr']
name_pos = 0
lastname_pos = 0
for key_val in key: # remove gender_key in string
if key_val in raw_list:
raw_list.remove(key_val)
try:
for i in range(len(raw_list)):
if raw_list[i] == "name":
info["name"] = raw_list[i+1]
name_pos = i+1
elif raw_list[i] == "lastname":
info["lastname"] = raw_list[i+1]
lastname_pos = i+1
except:
pass
# กรณี หาอย่างใดอย่าหนึ่งเจอให้ลองข้ามไปดู 1 index name, "name_val", lastname , "lastname_val"
if (info["name"] != "None") and (info["lastname"] == "None"):
try:
info["lastname"] = raw_list[name_pos+2]
except:
pass
elif (info["lastname"] != "None") and (info["name"] == "None"):
try:
info["name"] = raw_list[lastname_pos-2]
except:
pass
# remove . on "mr." and "mrs."
info["name"] = info["name"].replace(".","")
info["lastname"] = info["lastname"].replace(".","")
return info
st.subheader("Process Completed!.....")
st.write(id_num)
st.write(name_sum(raw_data))
if choice == "Detection":
st.title("ATK-OCR classification (AOC) Webapp.")
#subtitle
st.subheader(" Antigen test kit + Identification Card detector.")
pages_name = ['ATK + Idcard Detect', 'ATK Detect', 'Idcard Detect']
page = st.radio('Select option mode :', pages_name)
#image uploader
image = st.file_uploader(label = "upload ATK + Idcard img here.. OwO",type=['png','jpg','jpeg'])
if image is not None:
new_img = img_resize(image, 1280)
if page == "ATK + Idcard Detect":
st.image(new_img)
with st.spinner("🤖 ATK + Idcard Working... "):
t1 = time.perf_counter()
Get_Idcard_detail(image)
get_detection(image)
t2 = time.perf_counter()
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
elif page == "ATK Detect":
st.image(new_img)
with st.spinner("🤖 ATK Working... "):
t1 = time.perf_counter()
get_detection(image)
t2 = time.perf_counter()
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
elif page == "Idcard Detect":
st.image(new_img)
with st.spinner("🤖 Idcard Working... "):
t1 = time.perf_counter()
Get_Idcard_detail(image)
t2 = time.perf_counter()
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
else:
st.write("## Waiting for image..")
st.image('atk_idcard.jpeg')
elif choice =='About' :
st.header("About...")
st.subheader("AOC คืออะไร ?")
st.write("- เป็นระบบที่สามารถคัดกรองผลตรวจเชื้อของ COVID-19 ได้ผ่าน ที่ตรวจ ATK (Antigen Test Kit) ควบคู่กับบัตรประชาชน จากรูปภาพได้โดยอัตโนมัติ")
st.subheader("AOC ทำอะไรได้บ้าง ?")
st.write("- ตรวจจับผลตรวจ ATK (Obj detection) [debugging in progress]")
st.write("- ตรวจจับชื่อ-นามสกุล (OCR)")
st.write("- ตรวจจับเลขบัตรประชาชน (OCR)")
st.subheader("AOC ดีกว่ายังไง ?")
st.write("จากผลที่ได้จากการเปรียบเทียบกันระหว่าง model (AOC) กับ คน (Baseline) จำนวน 30 ภาพ / คน ได้ผลดังนี้")
st.image("./acc_table.png")
st.write("จากผลที่ได้สรุปได้ว่า ส่วนที่ผ่าน Baseline และมีประสิทธิภาพดีกว่าคัดกรองด้วยคนคือ ผลตรวจ ATK ได้ผลที่ 100 %, เลขบัตรประชน ได้ผลที่ 100 % และ ความเร็วในการคัดกรอง ได้ผลที่ 4.84 วินาที ซึ่งมีความเร็วมากกว่า 81% เมื่อเทียบกับคัดกรองด้วยคน ถือว่ามีประสิทธิภาพที่สูงมากในการคัดกรอง และ มีประสิทธิภาพมากกว่าการคัดแยกด้วยมนุษย์")
st.write("** ความเร็วที่โมเดลทำได้อาจไม่ตรงตามที่ deploy บนเว็บ เนื่องจากในเว็บ ไม่มี GPU ในการประมวลผลอาจทำให้โมเดลใช้เวลาในการประมวลที่นานกว่าตอนใช้ GPU")
st.subheader("คำแนะนำในการใช้งาน")
st.write("- ในการใช้งานให้ถ่ายรูปภาพบัตรประชาชนในแนวตั้งเท่านั้น เนื่องจากถ้าเป็นแนวอื่นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#3
st.write("- ภาพไม่ควรมีแสงที่สว่างมากเกืนไป และ มืดเกินไป มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#4
st.write("- ภาพไม่ควรที่จะอยู่ไกลเกินไป และ ควรมีความชัด มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อน หรือ ไม่สามารถตรวจจับได้")#5
st.subheader("รายละเอียดเพิ่มเติม")
st.write('[Medium blog](https://medium.com/@mjsalyjoh/atk-ocr-classification-aoc-%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%9A%E0%B8%84%E0%B8%B1%E0%B8%94%E0%B8%81%E0%B8%A3%E0%B8%AD%E0%B8%87%E0%B8%9C%E0%B8%A5%E0%B8%95%E0%B8%A3%E0%B8%A7%E0%B8%88-atk-%E0%B9%81%E0%B8%A5%E0%B8%B0-%E0%B8%9A%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%8A%E0%B8%B2%E0%B8%8A%E0%B8%99-fa32a8d47599)')
st.write('[Github Link](https://github.com/Tanaanan/AOC_ATK_OCR_Classification)')
st.warning("** ระบบ ATK ตอนนี้ใช้เป็น Image classification อยู่เนื่องจาก Object detection ยังมีปัญหาในการ deploy on cloud.. (กำลังอยู่ในขั้นตอน debug!)")
st.sidebar.subheader('More image for test..')
st.sidebar.write('[Github img test set.](https://github.com/Tanaanan/AOC_ATK_OCR_Classification/tree/main/test_set(img))')
st.sidebar.markdown('---')
st.sidebar.subheader('Recomend / Issues report..')
st.sidebar.write('[Google form](https://forms.gle/zYpYFKcTpBoFGxN58)')
st.sidebar.markdown('---')
st.sidebar.subheader('Made by Tanaanan .M')
st.sidebar.write("Contact : [email protected]")