Spaces:
Runtime error
Runtime error
import streamlit as st #Web App | |
from PIL import Image, ImageOps #Image Processing | |
import time | |
from unittest import result | |
from pythainlp.util import isthai | |
import numpy as np | |
import easyocr as ocr #OCR | |
import editdistance | |
from fastbook import * | |
from fastai.vision import * | |
from glob import glob | |
from pathlib import Path | |
from sklearn.metrics import precision_recall_fscore_support, accuracy_score, roc_auc_score | |
st.sidebar.image("./stem_logo.png") | |
st.sidebar.header("ATK-OCR classification (AOC) Webapp.") | |
activities = ["Detection", "About"] | |
choice = st.sidebar.selectbox("Select option..",activities) | |
#set default size as 1280 x 1280 | |
def img_resize(input_path,img_size): # padding | |
desired_size = img_size | |
im = Image.open(input_path) | |
im = ImageOps.exif_transpose(im) # fix image rotating | |
width, height = im.size # get img_input size | |
if (width == 1280) and (height == 1280): | |
new_im = im | |
else: | |
#im = im.convert('L') #Convert to gray | |
old_size = im.size # old_size[0] is in (width, height) format | |
ratio = float(desired_size)/max(old_size) | |
new_size = tuple([int(x*ratio) for x in old_size]) | |
im = im.resize(new_size, Image.ANTIALIAS) | |
new_im = Image.new("RGB", (desired_size, desired_size)) | |
new_im.paste(im, ((desired_size-new_size[0])//2, | |
(desired_size-new_size[1])//2)) | |
return new_im | |
checkpoint_path = "./ATK Efficientb_7 FastAI(96%).pkl" | |
learn_inf = load_learner(checkpoint_path) | |
model = learn_inf.model.eval() | |
def get_detection(img_path): | |
bytes_data = img_path.getvalue() # change fileuploader type to bytes (st.file_uploader) | |
pred = learn_inf.predict(bytes_data) | |
detect_val = "" | |
if pred[0] == "1_Positive": | |
detect_val = "Positive" | |
st.error("Result : {} with {}% confidence".format(detect_val, round(float(pred[2][1]*100),2))) | |
if pred[0] == "0_Negative": | |
detect_val = "Negative" | |
st.success("Result : {} with {}% confidence".format(detect_val, round(float(pred[2][0]*100),2))) | |
def load_model(): | |
reader = ocr.Reader(['en'],model_storage_directory='.') | |
return reader | |
reader = load_model() #load model | |
def Get_Idcard_detail(file_path): | |
raw_data = [] | |
id_num = {"id_num" : "None"} | |
name = file_path | |
img = Image.open(name) | |
img = ImageOps.exif_transpose(img) # fix image rotating | |
width, height = img.size # get img_input size | |
if (width == 1280) and (height == 1280): | |
result = reader.readtext(np.array(img)) | |
else: | |
#im = im.convert('L') #Convert to gray | |
old_size = img.size # old_size[0] is in (width, height) format | |
ratio = float(1280)/max(old_size) | |
new_size = tuple([int(x*ratio) for x in old_size]) | |
img = img.resize(new_size, Image.ANTIALIAS) | |
new_im = Image.new("RGB", (1280, 1280)) | |
new_im.paste(img, ((1280-new_size[0])//2, | |
(1280-new_size[1])//2)) | |
result = reader.readtext(np.array(new_im)) | |
result_text = [] #empty list for results | |
for text in result: | |
result_text.append(text[1]) | |
raw_data = result_text | |
def get_english(raw_list): # Cut only english var | |
eng_name = [] | |
thai_name = [] | |
for name in raw_list: | |
if isthai(name) == True: | |
thai_name.append(name) | |
else: | |
eng_name.append(name) | |
return eng_name | |
raw_data = get_english(raw_data) | |
def Clear_syntax(raw_list): | |
Clean_syntax = ["","#","{","}","=","/","@","#","$","—","|","%","-","(",")","¥", "[", "]", "‘",':',';'] | |
for k in range(len(Clean_syntax)): | |
while (Clean_syntax[k] in raw_list): # remove single symbol | |
raw_list.remove(Clean_syntax[k]) | |
for l in range(len(raw_list)): | |
raw_list[l] = raw_list[l].replace("!","l") #split ! --> l (Error OCR Check) | |
raw_list[l] = raw_list[l].replace(",",".") #split ! --> l (Error OCR Check) | |
raw_list[l] = raw_list[l].replace(" ","") #split " " out from str | |
raw_list[l] = raw_list[l].lower() #Set all string to lowercase | |
for m in range(len(raw_list)): #Clear symbol in str "Hi/'" --> "Hi" | |
for n in range(len(Clean_syntax)): | |
raw_list[m] = raw_list[m].replace(Clean_syntax[n],"") | |
return raw_list | |
raw_data = Clear_syntax(raw_data) | |
def get_idnum(raw_list): | |
id_num = {"id_num" : "None"} | |
# 1. normal check | |
for i in range(len(raw_list)): # check if len(list) = 1, 4, 5, 2, 1 (13 digit idcard) and all is int | |
try: | |
if ((len(raw_list[i]) == 1) and (len(raw_list[i+1]) == 4) and (len(raw_list[i+2]) == 5) and (len(raw_list[i+3]) == 2) and (len(raw_list[i+4]) == 1)) and ((raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4]).isnumeric()): | |
id_num["id_num"] = (raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4]) | |
break | |
except: | |
pass | |
# 2. Hardcore Check | |
if id_num["id_num"] == "None": | |
id_count = 0 | |
index_first = 0 | |
index_end = 0 | |
for i in range(len(raw_list)): | |
if id_count == 13: | |
index_end = i-1 #ลบ 1 index เพราะ ครบ 13 รอบก่อนหน้านี้ | |
#print(f"index_first == {index_first} index_end == {index_end}") | |
#print(f"id = {raw_list[index_first:index_end+1]}") | |
id_num["id_num"] = ''.join(raw_list[index_first:index_end+1]) | |
break | |
else: | |
if raw_list[i].isnumeric() == True and index_first == 0: | |
id_count += len(raw_list[i]) | |
index_first = i | |
elif raw_list[i].isnumeric() == True and index_first != 0: | |
id_count += len(raw_list[i]) | |
elif raw_list[i].isnumeric() == False: | |
id_count = 0 | |
index_first = 0 | |
return id_num | |
id_num = (get_idnum(raw_data)) | |
#Complete list name check | |
def list_name_check(raw_list): | |
sum_list = raw_list | |
name_key = ['name', 'lastname'] | |
#1. name_key check | |
if ("name" in sum_list) and ("lastname" in sum_list): # if name and lastname in list pass it! | |
pass | |
else: | |
for i in range(len(name_key)): | |
for j in range(len(sum_list)): | |
if (editdistance.eval(name_key[i], sum_list[j]) <= 2 ): | |
sum_list[j] = name_key[i] | |
gender_key = ["mr.", "mrs.", 'master', 'miss'] | |
#2 gender_key check | |
count = 0 # check for break | |
for i in range(len(gender_key)): | |
for j in range(len(sum_list)): | |
if (count == 0): | |
try: | |
if (sum_list[i] == "name") or (sum_list[i] == "lastname"): # skip "name" and "lastname" | |
pass | |
else: | |
# mr, mrs sensitive case double check with len(gender_key) == len(keyword) | |
if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 and (len(gender_key[i]) == len(sum_list[j]))): | |
sum_list[j] = gender_key[i] | |
count+=1 | |
#print(1) | |
elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])): | |
sum_list[j] = gender_key[i] | |
count+=1 | |
#print(1) | |
except: | |
if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 2 and (len(gender_key[i]) == len(sum_list[j]))): | |
sum_list[j] = gender_key[i] | |
count+=1 | |
#print(1) | |
elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])): | |
sum_list[j] = gender_key[i] | |
count+=1 | |
#print(1) | |
else: | |
break | |
return sum_list | |
raw_data = list_name_check(raw_data) | |
#get_eng_name | |
def get_engname(raw_list): | |
get_data = raw_list | |
engname_list = [] | |
name_pos = [] | |
lastname_pos = [] | |
mr_pos = [] | |
mrs_pos = [] | |
# check keyword by name, lastname, master, mr, miss, mrs | |
for j in range(len(get_data)): #get "name" , "lastname" index | |
if "name" == get_data[j]: | |
name_pos.append(j) | |
elif "lastname" == get_data[j]: | |
lastname_pos.append(j) | |
elif ("mr." == get_data[j]) or ("master" == get_data[j]): | |
mr_pos.append(j) | |
elif ("miss" == get_data[j]) or ("mrs." == get_data[j]): | |
mrs_pos.append(j) | |
if len(name_pos) != 0: #get_engname ex --> ['name', 'master', 'tanaanan', 'lastname', 'chalermpan'] | |
engname_list = get_data[name_pos[0]:name_pos[0]+6] # select first index กรณีมี "name" มากกว่า 1 ตัว | |
elif len(lastname_pos) != 0: | |
engname_list = get_data[lastname_pos[0]-3:lastname_pos[0]+3] | |
elif len(mr_pos) != 0: | |
engname_list = get_data[mr_pos[0]-1:mr_pos[0]+5] | |
elif len(mrs_pos) != 0: | |
engname_list = get_data[mrs_pos[0]-1:mrs_pos[0]+5] | |
else: | |
print("Can't find eng name!!") | |
return engname_list | |
raw_data = get_engname(raw_data) | |
def split_genkey(raw_list): # remove stringname + gender_key ex. "missjate" -> "jate" | |
data = raw_list | |
key = ['mrs.','mr.','master','miss'] | |
name = "" #gen_key name | |
name_pos = 0 | |
gen_index = 0 | |
gen_type = "" #male / female | |
# check keyword | |
for key_val in key: | |
for each_text in data: | |
if (each_text[:len(key_val)] == key_val) or (editdistance.eval(each_text[:len(key_val)],key_val) <= 1 and (len(each_text[:len(key_val)]) == len(key_val))): | |
#each_text = each_text[len(key):] | |
if (each_text == "name") or (each_text == "lastname"): | |
pass | |
else: | |
name = (each_text[:len(key_val)]) | |
name_pos = data.index(each_text) # get_index | |
gen_index = len(key_val) | |
break | |
if (name_pos != 0): | |
data[name_pos] = data[name_pos][gen_index:] # split gender_key on list | |
for empty_str in range(data.count('')): # clear "empty string" | |
data.remove('') | |
return data | |
raw_data = split_genkey(raw_data) | |
def clean_name_data(raw_list): # delete all single string and int string | |
for k in range(len(raw_list)): | |
try: | |
while ((len(raw_list[k]) <= 2) or (raw_list[k].isnumeric() == True)): # remove single symbol | |
raw_list.remove(raw_list[k]) | |
except IndexError: | |
pass | |
return raw_list | |
raw_data = clean_name_data(raw_data) | |
def name_sum(raw_list): | |
info = {"name" : "None", | |
"lastname" : "None"} | |
key = ['mr.','mrs.', 'master', 'miss', 'mrs','mr'] | |
name_pos = 0 | |
lastname_pos = 0 | |
for key_val in key: # remove gender_key in string | |
if key_val in raw_list: | |
raw_list.remove(key_val) | |
try: | |
for i in range(len(raw_list)): | |
if raw_list[i] == "name": | |
info["name"] = raw_list[i+1] | |
name_pos = i+1 | |
elif raw_list[i] == "lastname": | |
info["lastname"] = raw_list[i+1] | |
lastname_pos = i+1 | |
except: | |
pass | |
# กรณี หาอย่างใดอย่าหนึ่งเจอให้ลองข้ามไปดู 1 index name, "name_val", lastname , "lastname_val" | |
if (info["name"] != "None") and (info["lastname"] == "None"): | |
try: | |
info["lastname"] = raw_list[name_pos+2] | |
except: | |
pass | |
elif (info["lastname"] != "None") and (info["name"] == "None"): | |
try: | |
info["name"] = raw_list[lastname_pos-2] | |
except: | |
pass | |
# remove . on "mr." and "mrs." | |
info["name"] = info["name"].replace(".","") | |
info["lastname"] = info["lastname"].replace(".","") | |
return info | |
st.subheader("Process Completed!.....") | |
st.write(id_num) | |
st.write(name_sum(raw_data)) | |
if choice == "Detection": | |
st.title("ATK-OCR classification (AOC) Webapp.") | |
#subtitle | |
st.subheader(" Antigen test kit + Identification Card detector.") | |
pages_name = ['ATK + Idcard Detect', 'ATK Detect', 'Idcard Detect'] | |
page = st.radio('Select option mode :', pages_name) | |
#image uploader | |
image = st.file_uploader(label = "upload ATK + Idcard img here.. OwO",type=['png','jpg','jpeg']) | |
if image is not None: | |
new_img = img_resize(image, 1280) | |
if page == "ATK + Idcard Detect": | |
st.image(new_img) | |
with st.spinner("🤖 ATK + Idcard Working... "): | |
t1 = time.perf_counter() | |
Get_Idcard_detail(image) | |
get_detection(image) | |
t2 = time.perf_counter() | |
st.write('time taken to run: {:.2f} sec'.format(t2-t1)) | |
elif page == "ATK Detect": | |
st.image(new_img) | |
with st.spinner("🤖 ATK Working... "): | |
t1 = time.perf_counter() | |
get_detection(image) | |
t2 = time.perf_counter() | |
st.write('time taken to run: {:.2f} sec'.format(t2-t1)) | |
elif page == "Idcard Detect": | |
st.image(new_img) | |
with st.spinner("🤖 Idcard Working... "): | |
t1 = time.perf_counter() | |
Get_Idcard_detail(image) | |
t2 = time.perf_counter() | |
st.write('time taken to run: {:.2f} sec'.format(t2-t1)) | |
else: | |
st.write("## Waiting for image..") | |
st.image('atk_idcard.jpeg') | |
elif choice =='About' : | |
st.header("About...") | |
st.subheader("AOC คืออะไร ?") | |
st.write("- เป็นระบบที่สามารถคัดกรองผลตรวจเชื้อของ COVID-19 ได้ผ่าน ที่ตรวจ ATK (Antigen Test Kit) ควบคู่กับบัตรประชาชน จากรูปภาพได้โดยอัตโนมัติ") | |
st.subheader("AOC ทำอะไรได้บ้าง ?") | |
st.write("- ตรวจจับผลตรวจ ATK (Obj detection) [debugging in progress]") | |
st.write("- ตรวจจับชื่อ-นามสกุล (OCR)") | |
st.write("- ตรวจจับเลขบัตรประชาชน (OCR)") | |
st.subheader("AOC ดีกว่ายังไง ?") | |
st.write("จากผลที่ได้จากการเปรียบเทียบกันระหว่าง model (AOC) กับ คน (Baseline) จำนวน 30 ภาพ / คน ได้ผลดังนี้") | |
st.image("./acc_table.png") | |
st.write("จากผลที่ได้สรุปได้ว่า ส่วนที่ผ่าน Baseline และมีประสิทธิภาพดีกว่าคัดกรองด้วยคนคือ ผลตรวจ ATK ได้ผลที่ 100 %, เลขบัตรประชน ได้ผลที่ 100 % และ ความเร็วในการคัดกรอง ได้ผลที่ 4.84 วินาที ซึ่งมีความเร็วมากกว่า 81% เมื่อเทียบกับคัดกรองด้วยคน ถือว่ามีประสิทธิภาพที่สูงมากในการคัดกรอง และ มีประสิทธิภาพมากกว่าการคัดแยกด้วยมนุษย์") | |
st.write("** ความเร็วที่โมเดลทำได้อาจไม่ตรงตามที่ deploy บนเว็บ เนื่องจากในเว็บ ไม่มี GPU ในการประมวลผลอาจทำให้โมเดลใช้เวลาในการประมวลที่นานกว่าตอนใช้ GPU") | |
st.subheader("คำแนะนำในการใช้งาน") | |
st.write("- ในการใช้งานให้ถ่ายรูปภาพบัตรประชาชนในแนวตั้งเท่านั้น เนื่องจากถ้าเป็นแนวอื่นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#3 | |
st.write("- ภาพไม่ควรมีแสงที่สว่างมากเกืนไป และ มืดเกินไป มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#4 | |
st.write("- ภาพไม่ควรที่จะอยู่ไกลเกินไป และ ควรมีความชัด มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อน หรือ ไม่สามารถตรวจจับได้")#5 | |
st.subheader("รายละเอียดเพิ่มเติม") | |
st.write('[Medium blog](https://medium.com/@mjsalyjoh/atk-ocr-classification-aoc-%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%9A%E0%B8%84%E0%B8%B1%E0%B8%94%E0%B8%81%E0%B8%A3%E0%B8%AD%E0%B8%87%E0%B8%9C%E0%B8%A5%E0%B8%95%E0%B8%A3%E0%B8%A7%E0%B8%88-atk-%E0%B9%81%E0%B8%A5%E0%B8%B0-%E0%B8%9A%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%8A%E0%B8%B2%E0%B8%8A%E0%B8%99-fa32a8d47599)') | |
st.write('[Github Link](https://github.com/Tanaanan/AOC_ATK_OCR_Classification)') | |
st.warning("** ระบบ ATK ตอนนี้ใช้เป็น Image classification อยู่เนื่องจาก Object detection ยังมีปัญหาในการ deploy on cloud.. (กำลังอยู่ในขั้นตอน debug!)") | |
st.sidebar.subheader('More image for test..') | |
st.sidebar.write('[Github img test set.](https://github.com/Tanaanan/AOC_ATK_OCR_Classification/tree/main/test_set(img))') | |
st.sidebar.markdown('---') | |
st.sidebar.subheader('Recomend / Issues report..') | |
st.sidebar.write('[Google form](https://forms.gle/zYpYFKcTpBoFGxN58)') | |
st.sidebar.markdown('---') | |
st.sidebar.subheader('Made by Tanaanan .M') | |
st.sidebar.write("Contact : [email protected]") | |