File size: 6,367 Bytes
8516514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import logging
os.environ["WANDB_PROJECT"] = "RoBERTa_QA_Finetune"

import argparse
from datasets import load_dataset
from transformers import (
    RobertaTokenizerFast,
    DefaultDataCollator,
    TrainingArguments,
    Trainer,
)

import torch

from utils import RobertaConfig, ExtractiveQAPreProcesing
from model import RobertaForQuestionAnswering

import warnings
warnings.filterwarnings("ignore")

def parse_arguments():

    parser = argparse.ArgumentParser(description="Wav2Vec2 Finetuning Arguments on Librispeech")

    ### Experiment Logging ###
    parser.add_argument(
        "--experiment_name",
        required=True,
        type=str
    )

    parser.add_argument(
        "--working_directory",
        required=True,
        type=str
    )

    parser.add_argument(
        "--path_to_cache_dir",
        help="Path to huggingface cache if different from default",
        default=None,
        type=str
    )

    parser.add_argument(
        "--num_train_epochs",
        help="Number of epochs you want to train for",
        default=3,
        type=int
    )

    parser.add_argument(
        "--save_steps",
        help="After how many steps do you want to log a checkpoint",
        default=500,
        type=int
    )

    parser.add_argument(
        "--eval_steps",
        help="After how many steps do you want to evaluate on eval data",
        default=500,
        type=int
    )

    parser.add_argument(
        "--logging_steps",
        help="After how many steps do you want to log to Weights and Biases (if installed)",
        default=500,
        type=int
    )

    parser.add_argument(
        "--warmup_steps",
        help="Number of learning rate warmup steps",
        default=100,
        type=int
    )

    ### Training Arguments ###

    parser.add_argument(
        "--per_device_batch_size",
        help="Batch size for every gradient accumulation steps",
        default=2,
        type=int
    )

    parser.add_argument(
        "--gradient_accumulation_steps",
        help="Number of gradient accumulation steps you want",
        default=2,
        type=int
    )

    parser.add_argument(
        "--learning_rate",
        help="Max learning rate that we warmup to",
        default=2e-5,
        type=float
    )

    parser.add_argument(
        "--weight_decay",
        help="Weight decay applied to model parameters during training",
        default=0.01,
        type=float
    )

    parser.add_argument(
        "--save_total_limit",
        help="Max number of checkpoints to save",
        default=4,
        type=int
    )

    ### Backbone Arguments ###
    parser.add_argument(
        "--huggingface_model_name",
        help="Name for pretrained RoBERTa backbone and Tokenizer",
        default="deepset/roberta-base-squad2",
        type=str
    )

    parser.add_argument(
        "--path_to_pretrained_backbone",
        help="Path to model weights stored from our pretraining to initialize the backbone",
        default=None,
        type=str
    )

    parser.add_argument(
        "--pretrained_backbone",
        help="Do you want want a `pretrained` backbone that we made (need to provide path_to_pretrained_backbone), \
            `pretrained_huggingface` backbone (then need huggingface_model_name), or `random` initialized backbone",
        choices=("pretrained", "pretrained_huggingface", "random"),
        type=str
    )
    parser.add_argument('--resume_from_checkpoint', type=str, default=None)
    parser.add_argument('--model_name_or_path', type=str, default="roberta-base")

    args = parser.parse_args()

    return args


### Load Arguments ###
args = parse_arguments()

def load_tokenizer(model_name):
    try:
        return RobertaTokenizerFast.from_pretrained(model_name)
    except Exception as e:
        logging.error(f"Failed to load tokenizer: {e}")
        raise

def load_model(config):
    try:
        return RobertaForQuestionAnswering(config)
    except Exception as e:
        logging.error(f"Failed to load model: {e}")
        raise
logging.basicConfig(level=logging.INFO)
logging.info("----------Loading dataset and tokenizer----------")

### Load Tokenizer ###
tokenizer = RobertaTokenizerFast.from_pretrained(args.huggingface_model_name)

### Load Config ###



dataset = load_dataset("stanfordnlp/coqa")
processor = ExtractiveQAPreProcesing()
tokenized_squad = dataset.map(processor, batched=True, remove_columns=dataset["train"].column_names)

# print(tokenized_squad.column_names)
### Load Model ###
if args.resume_from_checkpoint is not None:
    config = RobertaConfig(pretrained_backbone=args.pretrained_backbone,
                           path_to_pretrained_weights=args.path_to_pretrained_backbone)
    model = RobertaForQuestionAnswering(config)
    model.load_state_dict(torch.load(f"{args.resume_from_checkpoint}/training_args.bin", map_location="cpu"))
else:
    config = RobertaConfig(pretrained_backbone=args.pretrained_backbone,
                           path_to_pretrained_weights=args.path_to_pretrained_backbone)
    model = RobertaForQuestionAnswering(config)



### Load Default Collator, We padded to longest length so no padding necessary ##

data_collator = DefaultDataCollator()

### Define Training Arguments ###
training_args = TrainingArguments(
    output_dir=os.path.join(args.working_directory, args.experiment_name),
    per_device_train_batch_size=args.per_device_batch_size,
    gradient_accumulation_steps=args.gradient_accumulation_steps,
    # evaluation_strategy="steps",
    num_train_epochs=args.num_train_epochs,
    bf16=True,
    save_steps=args.save_steps,
    eval_steps=args.eval_steps,
    logging_steps=args.logging_steps,
    learning_rate=args.learning_rate,
    weight_decay=args.weight_decay,
    warmup_steps=args.warmup_steps,
    save_total_limit=args.save_total_limit,
    run_name=args.experiment_name,

)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_squad["train"],
    eval_dataset=tokenized_squad["validation"],
    tokenizer=tokenizer,
    data_collator=data_collator,
)

### TRAIN MODEL !!! ###
# trainer.train()
trainer.train(resume_from_checkpoint="model/RoBERTa/finetune_qa_hf_roberta_backbone/checkpoint-54324")

### Save Final Model ###
trainer.save_model("/home/tangsan/AllNlpProject/CoQAChat/model/RoBERTa/save_model")