Spaces:
Sleeping
Sleeping
File size: 6,367 Bytes
8516514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import logging
os.environ["WANDB_PROJECT"] = "RoBERTa_QA_Finetune"
import argparse
from datasets import load_dataset
from transformers import (
RobertaTokenizerFast,
DefaultDataCollator,
TrainingArguments,
Trainer,
)
import torch
from utils import RobertaConfig, ExtractiveQAPreProcesing
from model import RobertaForQuestionAnswering
import warnings
warnings.filterwarnings("ignore")
def parse_arguments():
parser = argparse.ArgumentParser(description="Wav2Vec2 Finetuning Arguments on Librispeech")
### Experiment Logging ###
parser.add_argument(
"--experiment_name",
required=True,
type=str
)
parser.add_argument(
"--working_directory",
required=True,
type=str
)
parser.add_argument(
"--path_to_cache_dir",
help="Path to huggingface cache if different from default",
default=None,
type=str
)
parser.add_argument(
"--num_train_epochs",
help="Number of epochs you want to train for",
default=3,
type=int
)
parser.add_argument(
"--save_steps",
help="After how many steps do you want to log a checkpoint",
default=500,
type=int
)
parser.add_argument(
"--eval_steps",
help="After how many steps do you want to evaluate on eval data",
default=500,
type=int
)
parser.add_argument(
"--logging_steps",
help="After how many steps do you want to log to Weights and Biases (if installed)",
default=500,
type=int
)
parser.add_argument(
"--warmup_steps",
help="Number of learning rate warmup steps",
default=100,
type=int
)
### Training Arguments ###
parser.add_argument(
"--per_device_batch_size",
help="Batch size for every gradient accumulation steps",
default=2,
type=int
)
parser.add_argument(
"--gradient_accumulation_steps",
help="Number of gradient accumulation steps you want",
default=2,
type=int
)
parser.add_argument(
"--learning_rate",
help="Max learning rate that we warmup to",
default=2e-5,
type=float
)
parser.add_argument(
"--weight_decay",
help="Weight decay applied to model parameters during training",
default=0.01,
type=float
)
parser.add_argument(
"--save_total_limit",
help="Max number of checkpoints to save",
default=4,
type=int
)
### Backbone Arguments ###
parser.add_argument(
"--huggingface_model_name",
help="Name for pretrained RoBERTa backbone and Tokenizer",
default="deepset/roberta-base-squad2",
type=str
)
parser.add_argument(
"--path_to_pretrained_backbone",
help="Path to model weights stored from our pretraining to initialize the backbone",
default=None,
type=str
)
parser.add_argument(
"--pretrained_backbone",
help="Do you want want a `pretrained` backbone that we made (need to provide path_to_pretrained_backbone), \
`pretrained_huggingface` backbone (then need huggingface_model_name), or `random` initialized backbone",
choices=("pretrained", "pretrained_huggingface", "random"),
type=str
)
parser.add_argument('--resume_from_checkpoint', type=str, default=None)
parser.add_argument('--model_name_or_path', type=str, default="roberta-base")
args = parser.parse_args()
return args
### Load Arguments ###
args = parse_arguments()
def load_tokenizer(model_name):
try:
return RobertaTokenizerFast.from_pretrained(model_name)
except Exception as e:
logging.error(f"Failed to load tokenizer: {e}")
raise
def load_model(config):
try:
return RobertaForQuestionAnswering(config)
except Exception as e:
logging.error(f"Failed to load model: {e}")
raise
logging.basicConfig(level=logging.INFO)
logging.info("----------Loading dataset and tokenizer----------")
### Load Tokenizer ###
tokenizer = RobertaTokenizerFast.from_pretrained(args.huggingface_model_name)
### Load Config ###
dataset = load_dataset("stanfordnlp/coqa")
processor = ExtractiveQAPreProcesing()
tokenized_squad = dataset.map(processor, batched=True, remove_columns=dataset["train"].column_names)
# print(tokenized_squad.column_names)
### Load Model ###
if args.resume_from_checkpoint is not None:
config = RobertaConfig(pretrained_backbone=args.pretrained_backbone,
path_to_pretrained_weights=args.path_to_pretrained_backbone)
model = RobertaForQuestionAnswering(config)
model.load_state_dict(torch.load(f"{args.resume_from_checkpoint}/training_args.bin", map_location="cpu"))
else:
config = RobertaConfig(pretrained_backbone=args.pretrained_backbone,
path_to_pretrained_weights=args.path_to_pretrained_backbone)
model = RobertaForQuestionAnswering(config)
### Load Default Collator, We padded to longest length so no padding necessary ##
data_collator = DefaultDataCollator()
### Define Training Arguments ###
training_args = TrainingArguments(
output_dir=os.path.join(args.working_directory, args.experiment_name),
per_device_train_batch_size=args.per_device_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
# evaluation_strategy="steps",
num_train_epochs=args.num_train_epochs,
bf16=True,
save_steps=args.save_steps,
eval_steps=args.eval_steps,
logging_steps=args.logging_steps,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
warmup_steps=args.warmup_steps,
save_total_limit=args.save_total_limit,
run_name=args.experiment_name,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_squad["train"],
eval_dataset=tokenized_squad["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
)
### TRAIN MODEL !!! ###
# trainer.train()
trainer.train(resume_from_checkpoint="model/RoBERTa/finetune_qa_hf_roberta_backbone/checkpoint-54324")
### Save Final Model ###
trainer.save_model("/home/tangsan/AllNlpProject/CoQAChat/model/RoBERTa/save_model") |