VisAt / app.py
Tanzeer's picture
Update app.py
e4b253e
import cv2
import numpy as np
import torch
from fastapi import FastAPI, UploadFile, File
from PIL import Image
from TranSalNet_Res import TranSalNet
from utils.data_process import preprocess_img, postprocess_img
app = FastAPI()
device = torch.device('cpu')
model = TranSalNet()
model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu')))
model.to(device)
model.eval()
def count_and_label_red_patches(heatmap, threshold=200):
red_mask = heatmap[:, :, 2] > threshold
contours, _ = cv2.findContours(red_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Sort the contours based on their areas in descending order
contours = sorted(contours, key=cv2.contourArea, reverse=True)
original_image = np.array(image)
centroid_list = [] # List to store the centroids of the contours in order
for i, contour in enumerate(contours, start=1):
# Compute the centroid of the current contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
else:
cX, cY = 0, 0
radius = 20 # Adjust the circle radius to fit the numbers
circle_color = (0, 0, 0) # Blue color
cv2.circle(original_image, (cX, cY), radius, circle_color, -1) # Draw blue circle
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
font_color = (255, 255, 255)
line_type = cv2.LINE_AA
cv2.putText(original_image, str(i), (cX - 10, cY + 10), font, font_scale, font_color, 2, line_type)
centroid_list.append((cX, cY)) # Add the centroid to the list
# Connect the red spots in the desired order
for i in range(len(centroid_list) - 1):
start_point = centroid_list[i]
end_point = centroid_list[i + 1]
line_color = (0, 0, 0) # Red color
cv2.line(original_image, start_point, end_point, line_color, 2)
return original_image, len(contours)
def process_image(image: Image.Image) -> np.ndarray:
img = image.resize((384, 288))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Convert to BGR color space
img = np.array(img) / 255.
img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
img = torch.from_numpy(img)
img = img.type(torch.FloatTensor).to(device)
pred_saliency = model(img).squeeze().detach().numpy()
heatmap = (pred_saliency * 255).astype(np.uint8)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # Use a blue colormap (JET)
heatmap = cv2.resize(heatmap, (image.width, image.height))
enhanced_image = np.array(image)
b, g, r = cv2.split(enhanced_image)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
b_enhanced = clahe.apply(b)
enhanced_image = cv2.merge((b_enhanced, g, r))
alpha = 0.7
blended_img = cv2.addWeighted(enhanced_image, 1 - alpha, heatmap, alpha, 0)
original_image, num_red_patches = count_and_label_red_patches(heatmap)
# Save processed image (optional)
cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200])
return blended_img
@app.post("/process_image")
async def process_uploaded_image(file: UploadFile = File(...)):
try:
contents = await file.read()
image = Image.open(io.BytesIO(contents))
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error opening image: {str(e)}")
try:
processed_image = process_image(image)
return StreamingResponse(io.BytesIO(cv2.imencode('.png', processed_image)[1].tobytes()), media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")