Tassawar's picture
Upload 2 files
e775794 verified
import streamlit as st
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
import io
import os
# Set matmul precision (important for performance on some systems)
torch.set_float32_matmul_precision(["high", "highest"][0])
# Load the model (outside the function for efficiency)
@st.cache_resource # Cache the model to avoid reloading on every run
def load_model():
model = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True)
model.to("cuda" if torch.cuda.is_available() else "cpu") # Use CUDA if available
return model
birefnet = load_model()
# Image transformation
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
@st.cache_data # Cache the processed images.
def process(image):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def process_file(uploaded_file):
try:
image = Image.open(uploaded_file).convert("RGB")
transparent = process(image)
# Convert to bytes for download
img_bytes = io.BytesIO()
transparent.save(img_bytes, format="PNG")
img_bytes = img_bytes.getvalue()
return img_bytes, transparent # Return bytes for download and PIL image for display
except Exception as e:
st.error(f"An error occurred: {e}")
return None, None
st.title("Background Removal Tool")
# Tabs for different input methods
tabs = ["Image Upload", "URL Input", "File Output"]
selected_tab = st.sidebar.radio("Select Input Method", tabs)
if selected_tab == "Image Upload":
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file).convert("RGB")
processed_image = process(image)
st.image(processed_image, caption="Processed Image")
elif selected_tab == "URL Input":
image_url = st.text_input("Paste an image URL")
if image_url:
try:
import requests
from io import BytesIO
response = requests.get(image_url, stream=True)
response.raise_for_status() # Raise an exception for bad status codes
image = Image.open(BytesIO(response.content)).convert("RGB")
processed_image = process(image)
st.image(processed_image, caption="Processed Image from URL")
except requests.exceptions.RequestException as e:
st.error(f"Error fetching image from URL: {e}")
except Exception as e:
st.error(f"Error processing image: {e}")
elif selected_tab == "File Output":
uploaded_file = st.file_uploader("Upload an image for file output", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
file_bytes, processed_image = process_file(uploaded_file)
if file_bytes:
st.image(processed_image, caption="Processed Image") # Display the image
st.download_button(
label="Download PNG",
data=file_bytes,
file_name=f"{uploaded_file.name.rsplit('.', 1)[0]}.png",
mime="image/png",
)