Spaces:
Runtime error
Runtime error
File size: 5,110 Bytes
47031d7 63fdbaa 47031d7 63fdbaa a4e24d4 db5664e 47031d7 a4e24d4 02fd6bb 47031d7 a4e24d4 47031d7 da1009f 02fd6bb a4e24d4 da1009f db5664e da1009f 02fd6bb 47031d7 02fd6bb 63fdbaa 02fd6bb 63fdbaa 02fd6bb 8f2f662 a4e24d4 02fd6bb a4e24d4 63fdbaa 02fd6bb 63fdbaa 47031d7 a4e24d4 47031d7 da1009f 02fd6bb da1009f 47031d7 db5664e a4e24d4 47031d7 da1009f 47031d7 02fd6bb 47031d7 da1009f 47031d7 a4e24d4 da1009f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import httpx
from typing import Optional, AsyncIterator, Dict, Any, Iterator
import logging
import asyncio
from litserve import LitAPI
from pydantic import BaseModel
class GenerationResponse(BaseModel):
generated_text: str
class InferenceApi(LitAPI):
def __init__(self, config: Dict[str, Any]):
"""Initialize the Inference API with configuration."""
super().__init__()
self.logger = logging.getLogger(__name__)
self.logger.info("Initializing Inference API")
self._device = None
self.stream = False
self.config = config
self.llm_config = config.get('llm_server', {})
async def setup(self, device: Optional[str] = None):
"""Setup method required by LitAPI"""
self._device = device
self.logger.info(f"Inference API setup completed on device: {device}")
async def _get_client(self):
"""Get or create HTTP client as needed"""
return httpx.AsyncClient(
base_url=self.llm_config.get('base_url', 'http://localhost:8002'),
timeout=float(self.llm_config.get('timeout', 60.0))
)
def _get_endpoint(self, endpoint_name: str) -> str:
"""Get full endpoint path including prefix"""
endpoints = self.llm_config.get('endpoints', {})
api_prefix = self.llm_config.get('api_prefix', '')
endpoint = endpoints.get(endpoint_name, '')
return f"{api_prefix}{endpoint}"
def predict(self, x: str, **kwargs) -> Iterator[str]:
"""Non-async prediction method that yields results."""
loop = asyncio.get_event_loop()
async def async_gen():
async for item in self._async_predict(x, **kwargs):
yield item
gen = async_gen()
while True:
try:
yield loop.run_until_complete(gen.__anext__())
except StopAsyncIteration:
break
async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]:
"""Internal async prediction method."""
if self.stream:
async for chunk in self.generate_stream(x, **kwargs):
yield chunk
else:
response = await self.generate_response(x, **kwargs)
yield response
def decode_request(self, request: Any, **kwargs) -> str:
"""Convert the request payload to input format."""
if isinstance(request, dict) and "prompt" in request:
return request["prompt"]
return request
def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]:
"""Convert the model output to a response payload."""
if self.stream:
return {"generated_text": output}
try:
result = next(output)
return {"generated_text": result}
except StopIteration:
return {"generated_text": ""}
async def generate_response(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> str:
"""Generate a complete response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('generate'),
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
)
response.raise_for_status()
data = response.json()
return data["generated_text"]
except Exception as e:
self.logger.error(f"Error in generate_response: {str(e)}")
raise
async def generate_stream(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> AsyncIterator[str]:
"""Generate a streaming response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...")
try:
client = await self._get_client()
async with client.stream(
"POST",
self._get_endpoint('generate_stream'),
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
) as response:
response.raise_for_status()
async for chunk in response.aiter_text():
yield chunk
await client.aclose()
except Exception as e:
self.logger.error(f"Error in generate_stream: {str(e)}")
raise
async def cleanup(self):
"""Cleanup method - no longer needed as clients are created per-request"""
pass |