Spaces:
Runtime error
Runtime error
File size: 9,298 Bytes
47031d7 d0b5a4b 47031d7 63fdbaa a4e24d4 db5664e d0b5a4b db5664e 47031d7 a4e24d4 02fd6bb 47031d7 a4e24d4 47031d7 da1009f 02fd6bb a4e24d4 799409f db5664e da1009f 799409f da1009f 02fd6bb 47031d7 02fd6bb 63fdbaa 02fd6bb 63fdbaa 02fd6bb 8f2f662 a4e24d4 d0b5a4b 1bcc710 d0b5a4b 1bcc710 d0b5a4b a4e24d4 02fd6bb a4e24d4 63fdbaa 02fd6bb 63fdbaa 47031d7 a4e24d4 47031d7 da1009f 02fd6bb da1009f 47031d7 db5664e a4e24d4 47031d7 da1009f 47031d7 02fd6bb 47031d7 da1009f 47031d7 a4e24d4 da1009f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import httpx
from typing import Optional, AsyncIterator, Dict, Any, Iterator, List
import logging
import asyncio
from litserve import LitAPI
from pydantic import BaseModel
class GenerationResponse(BaseModel):
generated_text: str
class InferenceApi(LitAPI):
def __init__(self, config: Dict[str, Any]):
"""Initialize the Inference API with configuration."""
super().__init__()
self.logger = logging.getLogger(__name__)
self.logger.info("Initializing Inference API")
self._device = None
self.stream = False
self.config = config
self.llm_config = config.get('llm_server', {})
def setup(self, device: Optional[str] = None):
"""Synchronous setup method required by LitAPI"""
self._device = device
self.logger.info(f"Inference API setup completed on device: {device}")
return self # It's common for setup methods to return self for chaining
async def _get_client(self):
"""Get or create HTTP client as needed"""
return httpx.AsyncClient(
base_url=self.llm_config.get('base_url', 'http://localhost:8002'),
timeout=float(self.llm_config.get('timeout', 60.0))
)
def _get_endpoint(self, endpoint_name: str) -> str:
"""Get full endpoint path including prefix"""
endpoints = self.llm_config.get('endpoints', {})
api_prefix = self.llm_config.get('api_prefix', '')
endpoint = endpoints.get(endpoint_name, '')
return f"{api_prefix}{endpoint}"
def predict(self, x: str, **kwargs) -> Iterator[str]:
"""Non-async prediction method that yields results."""
loop = asyncio.get_event_loop()
async def async_gen():
async for item in self._async_predict(x, **kwargs):
yield item
gen = async_gen()
while True:
try:
yield loop.run_until_complete(gen.__anext__())
except StopAsyncIteration:
break
async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]:
"""Internal async prediction method."""
if self.stream:
async for chunk in self.generate_stream(x, **kwargs):
yield chunk
else:
response = await self.generate_response(x, **kwargs)
yield response
async def generate_embedding(self, text: str) -> List[float]:
"""Generate embedding vector from input text."""
self.logger.debug(f"Forwarding embedding request for text: {text[:50]}...")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('embedding'),
json={"text": text}
)
response.raise_for_status()
data = response.json()
return data["embedding"]
except Exception as e:
self.logger.error(f"Error in generate_embedding: {str(e)}")
raise
async def check_system_status(self) -> Dict[str, Any]:
"""Check system status of the LLM Server."""
self.logger.debug("Checking system status...")
try:
async with await self._get_client() as client:
response = await client.get(
self._get_endpoint('system_status')
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in check_system_status: {str(e)}")
raise
async def download_model(self, model_name: Optional[str] = None) -> Dict[str, str]:
"""Download model files from the LLM Server."""
self.logger.debug(f"Forwarding model download request for: {model_name or 'default model'}")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('model_download'),
params={"model_name": model_name} if model_name else None
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in download_model: {str(e)}")
raise
except Exception as e:
self.logger.error(f"Error initiating model download: {str(e)}")
raise
async def validate_system(self) -> Dict[str, Any]:
"""Validate system configuration and setup."""
self.logger.debug("Validating system configuration...")
try:
async with await self._get_client() as client:
response = await client.get(
self._get_endpoint('system_validate')
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in validate_system: {str(e)}")
raise
async def initialize_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
"""Initialize specified model or default model."""
self.logger.debug(f"Initializing model: {model_name or 'default'}")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('model_initialize'),
params={"model_name": model_name} if model_name else None
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in initialize_model: {str(e)}")
raise
async def initialize_embedding_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
"""Initialize embedding model."""
self.logger.debug(f"Initializing embedding model: {model_name or 'default'}")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('model_initialize_embedding'),
json={"model_name": model_name} if model_name else {}
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in initialize_embedding_model: {str(e)}")
raise
def decode_request(self, request: Any, **kwargs) -> str:
"""Convert the request payload to input format."""
if isinstance(request, dict) and "prompt" in request:
return request["prompt"]
return request
def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]:
"""Convert the model output to a response payload."""
if self.stream:
return {"generated_text": output}
try:
result = next(output)
return {"generated_text": result}
except StopIteration:
return {"generated_text": ""}
async def generate_response(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> str:
"""Generate a complete response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('generate'),
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
)
response.raise_for_status()
data = response.json()
return data["generated_text"]
except Exception as e:
self.logger.error(f"Error in generate_response: {str(e)}")
raise
async def generate_stream(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> AsyncIterator[str]:
"""Generate a streaming response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...")
try:
client = await self._get_client()
async with client.stream(
"POST",
self._get_endpoint('generate_stream'),
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
) as response:
response.raise_for_status()
async for chunk in response.aiter_text():
yield chunk
await client.aclose()
except Exception as e:
self.logger.error(f"Error in generate_stream: {str(e)}")
raise
async def cleanup(self):
"""Cleanup method - no longer needed as clients are created per-request"""
pass |