File size: 9,298 Bytes
47031d7
d0b5a4b
47031d7
63fdbaa
a4e24d4
db5664e
 
d0b5a4b
db5664e
 
47031d7
a4e24d4
02fd6bb
47031d7
a4e24d4
47031d7
 
da1009f
02fd6bb
 
 
a4e24d4
799409f
 
db5664e
da1009f
799409f
da1009f
 
 
 
02fd6bb
 
47031d7
 
02fd6bb
 
 
 
 
 
 
63fdbaa
02fd6bb
63fdbaa
 
 
 
 
 
 
 
 
 
 
 
 
02fd6bb
8f2f662
 
 
 
 
 
a4e24d4
d0b5a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bcc710
 
 
 
d0b5a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bcc710
d0b5a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e24d4
02fd6bb
a4e24d4
 
 
 
63fdbaa
02fd6bb
63fdbaa
 
 
 
 
 
 
47031d7
 
 
 
 
 
 
a4e24d4
47031d7
 
 
da1009f
 
02fd6bb
da1009f
 
 
 
 
 
 
 
 
47031d7
 
 
 
 
 
 
 
 
 
db5664e
a4e24d4
47031d7
 
 
da1009f
 
47031d7
02fd6bb
47031d7
 
 
 
 
 
 
 
 
da1009f
47031d7
 
 
 
 
a4e24d4
da1009f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import httpx
from typing import Optional, AsyncIterator, Dict, Any, Iterator, List
import logging
import asyncio
from litserve import LitAPI
from pydantic import BaseModel


class GenerationResponse(BaseModel):
    generated_text: str

class InferenceApi(LitAPI):
    def __init__(self, config: Dict[str, Any]):
        """Initialize the Inference API with configuration."""
        super().__init__()
        self.logger = logging.getLogger(__name__)
        self.logger.info("Initializing Inference API")
        self._device = None
        self.stream = False
        self.config = config
        self.llm_config = config.get('llm_server', {})

    def setup(self, device: Optional[str] = None):
        """Synchronous setup method required by LitAPI"""
        self._device = device
        self.logger.info(f"Inference API setup completed on device: {device}")
        return self  # It's common for setup methods to return self for chaining

    async def _get_client(self):
        """Get or create HTTP client as needed"""
        return httpx.AsyncClient(
            base_url=self.llm_config.get('base_url', 'http://localhost:8002'),
            timeout=float(self.llm_config.get('timeout', 60.0))
        )

    def _get_endpoint(self, endpoint_name: str) -> str:
        """Get full endpoint path including prefix"""
        endpoints = self.llm_config.get('endpoints', {})
        api_prefix = self.llm_config.get('api_prefix', '')
        endpoint = endpoints.get(endpoint_name, '')
        return f"{api_prefix}{endpoint}"

    def predict(self, x: str, **kwargs) -> Iterator[str]:
        """Non-async prediction method that yields results."""
        loop = asyncio.get_event_loop()
        async def async_gen():
            async for item in self._async_predict(x, **kwargs):
                yield item

        gen = async_gen()
        while True:
            try:
                yield loop.run_until_complete(gen.__anext__())
            except StopAsyncIteration:
                break

    async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]:
        """Internal async prediction method."""
        if self.stream:
            async for chunk in self.generate_stream(x, **kwargs):
                yield chunk
        else:
            response = await self.generate_response(x, **kwargs)
            yield response

    async def generate_embedding(self, text: str) -> List[float]:
        """Generate embedding vector from input text."""
        self.logger.debug(f"Forwarding embedding request for text: {text[:50]}...")

        try:
            async with await self._get_client() as client:
                response = await client.post(
                    self._get_endpoint('embedding'),
                    json={"text": text}
                )
                response.raise_for_status()
                data = response.json()
                return data["embedding"]

        except Exception as e:
            self.logger.error(f"Error in generate_embedding: {str(e)}")
            raise

    async def check_system_status(self) -> Dict[str, Any]:
        """Check system status of the LLM Server."""
        self.logger.debug("Checking system status...")

        try:
            async with await self._get_client() as client:
                response = await client.get(
                    self._get_endpoint('system_status')
                )
                response.raise_for_status()
                return response.json()

        except Exception as e:
            self.logger.error(f"Error in check_system_status: {str(e)}")
            raise

    async def download_model(self, model_name: Optional[str] = None) -> Dict[str, str]:
        """Download model files from the LLM Server."""
        self.logger.debug(f"Forwarding model download request for: {model_name or 'default model'}")

        try:
            async with await self._get_client() as client:
                response = await client.post(
                    self._get_endpoint('model_download'),
                    params={"model_name": model_name} if model_name else None
                )
                response.raise_for_status()
                return response.json()

        except Exception as e:
            self.logger.error(f"Error in download_model: {str(e)}")
            raise

        except Exception as e:
            self.logger.error(f"Error initiating model download: {str(e)}")
            raise

    async def validate_system(self) -> Dict[str, Any]:
        """Validate system configuration and setup."""
        self.logger.debug("Validating system configuration...")

        try:
            async with await self._get_client() as client:
                response = await client.get(
                    self._get_endpoint('system_validate')
                )
                response.raise_for_status()
                return response.json()

        except Exception as e:
            self.logger.error(f"Error in validate_system: {str(e)}")
            raise

    async def initialize_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
        """Initialize specified model or default model."""
        self.logger.debug(f"Initializing model: {model_name or 'default'}")

        try:
            async with await self._get_client() as client:
                response = await client.post(
                    self._get_endpoint('model_initialize'),
                    params={"model_name": model_name} if model_name else None
                )
                response.raise_for_status()
                return response.json()

        except Exception as e:
            self.logger.error(f"Error in initialize_model: {str(e)}")
            raise

    async def initialize_embedding_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
        """Initialize embedding model."""
        self.logger.debug(f"Initializing embedding model: {model_name or 'default'}")

        try:
            async with await self._get_client() as client:
                response = await client.post(
                    self._get_endpoint('model_initialize_embedding'),
                    json={"model_name": model_name} if model_name else {}
                )
                response.raise_for_status()
                return response.json()

        except Exception as e:
            self.logger.error(f"Error in initialize_embedding_model: {str(e)}")
            raise

    def decode_request(self, request: Any, **kwargs) -> str:
        """Convert the request payload to input format."""
        if isinstance(request, dict) and "prompt" in request:
            return request["prompt"]
        return request

    def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]:
        """Convert the model output to a response payload."""
        if self.stream:
            return {"generated_text": output}
        try:
            result = next(output)
            return {"generated_text": result}
        except StopIteration:
            return {"generated_text": ""}

    async def generate_response(
            self,
            prompt: str,
            system_message: Optional[str] = None,
            max_new_tokens: Optional[int] = None
    ) -> str:
        """Generate a complete response by forwarding the request to the LLM Server."""
        self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...")

        try:
            async with await self._get_client() as client:
                response = await client.post(
                    self._get_endpoint('generate'),
                    json={
                        "prompt": prompt,
                        "system_message": system_message,
                        "max_new_tokens": max_new_tokens
                    }
                )
                response.raise_for_status()
                data = response.json()
                return data["generated_text"]

        except Exception as e:
            self.logger.error(f"Error in generate_response: {str(e)}")
            raise

    async def generate_stream(
            self,
            prompt: str,
            system_message: Optional[str] = None,
            max_new_tokens: Optional[int] = None
    ) -> AsyncIterator[str]:
        """Generate a streaming response by forwarding the request to the LLM Server."""
        self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...")

        try:
            client = await self._get_client()
            async with client.stream(
                    "POST",
                    self._get_endpoint('generate_stream'),
                    json={
                        "prompt": prompt,
                        "system_message": system_message,
                        "max_new_tokens": max_new_tokens
                    }
            ) as response:
                response.raise_for_status()
                async for chunk in response.aiter_text():
                    yield chunk
            await client.aclose()

        except Exception as e:
            self.logger.error(f"Error in generate_stream: {str(e)}")
            raise

    async def cleanup(self):
        """Cleanup method - no longer needed as clients are created per-request"""
        pass