File size: 9,617 Bytes
47031d7
b5d6152
47031d7
b5d6152
 
 
47031d7
 
 
 
 
 
02fd6bb
 
eb5a3fb
47031d7
 
 
 
7b336c4
47031d7
92cdcfc
b5d6152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fd6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5a3fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47031d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b5a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47031d7
 
 
 
b5d6152
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from fastapi import APIRouter, HTTPException
from fastapi.responses import StreamingResponse
from typing import Optional
import json
from time import time
import logging
from .api import InferenceApi
from .schemas import (
    GenerateRequest,
    EmbeddingRequest,
    EmbeddingResponse,
    SystemStatusResponse,
    ValidationResponse,
    ChatCompletionRequest,
    ChatCompletionResponse, QueryExpansionResponse, QueryExpansionRequest, ChunkRerankResponse, ChunkRerankRequest
)

router = APIRouter()
logger = logging.getLogger(__name__)
api = None

def init_router(inference_api: InferenceApi):
    """Initialize router with an already setup API instance"""
    global api
    api = inference_api
    logger.info("Router initialized with Inference API instance")

@router.post("/generate")
async def generate_text(request: GenerateRequest):
    """Generate text response from prompt"""
    logger.info(f"Received generation request for prompt: {request.prompt[:50]}...")
    try:
        response = await api.generate_response(
            prompt=request.prompt,
            system_message=request.system_message,
            max_new_tokens=request.max_new_tokens
        )
        logger.info("Successfully generated response")
        return {"generated_text": response}
    except Exception as e:
        logger.error(f"Error in generate_text endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/generate/stream")
async def generate_stream(request: GenerateRequest):
    """Generate streaming text response from prompt"""
    logger.info(f"Received streaming generation request for prompt: {request.prompt[:50]}...")
    try:
        return StreamingResponse(
            api.generate_stream(
                prompt=request.prompt,
                system_message=request.system_message,
                max_new_tokens=request.max_new_tokens
            ),
            media_type="text/event-stream"
        )
    except Exception as e:
        logger.error(f"Error in generate_stream endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
    """OpenAI-compatible chat completion endpoint"""
    logger.info(f"Received chat completion request with {len(request.messages)} messages")

    try:
        # Extract the last user message, or combine messages if needed
        last_message = request.messages[-1].content

        if request.stream:
            # For streaming, we need to create a generator that yields OpenAI-compatible chunks
            async def generate_stream():
                async for chunk in api.generate_stream(
                        prompt=last_message,
                ):
                    # Create a streaming response chunk in OpenAI format
                    response_chunk = {
                        "id": "chatcmpl-123",
                        "object": "chat.completion.chunk",
                        "created": int(time()),
                        "model": request.model,
                        "choices": [{
                            "index": 0,
                            "delta": {
                                "content": chunk
                            },
                            "finish_reason": None
                        }]
                    }
                    yield f"data: {json.dumps(response_chunk)}\n\n"

                # Send the final chunk
                yield f"data: [DONE]\n\n"

            return StreamingResponse(
                generate_stream(),
                media_type="text/event-stream"
            )

        else:
            # For non-streaming, generate the full response
            response_text = await api.generate_response(
                prompt=last_message,
            )

            # Convert to OpenAI format
            return ChatCompletionResponse.from_response(
                content=response_text,
                model=request.model
            )

    except Exception as e:
        logger.error(f"Error in chat completion endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/expand_query", response_model=QueryExpansionResponse)
async def expand_query(request: QueryExpansionRequest):
    """Expand a query for RAG processing"""
    logger.info(f"Received query expansion request: {request.query[:50]}...")
    try:
        result = await api.expand_query(
            query=request.query,
            system_message=request.system_message
        )
        logger.info("Successfully expanded query")
        return result
    except FileNotFoundError as e:
        logger.error(f"Template file not found: {str(e)}")
        raise HTTPException(status_code=500, detail="Query expansion template not found")
    except json.JSONDecodeError as e:
        logger.error(f"Invalid JSON response from LLM: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from LLM")
    except Exception as e:
        logger.error(f"Error in expand_query endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/rerank", response_model=ChunkRerankResponse)
async def rerank_chunks(request: ChunkRerankRequest):
    """Rerank chunks based on their relevance to the query"""
    logger.info(f"Received reranking request for query: {request.query[:50]}...")
    try:
        result = await api.rerank_chunks(
            query=request.query,
            chunks=request.chunks,
            system_message=request.system_message
        )
        logger.info(f"Successfully reranked {len(request.chunks)} chunks")
        return result
    except Exception as e:
        logger.error(f"Error in rerank_chunks endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/embedding", response_model=EmbeddingResponse)
async def generate_embedding(request: EmbeddingRequest):
    """Generate embedding vector from text"""
    logger.info(f"Received embedding request for text: {request.text[:50]}...")
    try:
        embedding = await api.generate_embedding(request.text)
        logger.info(f"Successfully generated embedding of dimension {len(embedding)}")
        return EmbeddingResponse(
            embedding=embedding,
            dimension=len(embedding)
        )
    except Exception as e:
        logger.error(f"Error in generate_embedding endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/system/status",
            response_model=SystemStatusResponse,
            summary="Check System Status",
            description="Returns comprehensive system status including CPU, Memory, GPU, Storage, and Model information")
async def check_system():
    """Get system status from LLM Server"""
    try:
        return await api.check_system_status()
    except Exception as e:
        logger.error(f"Error checking system status: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/system/validate",
            response_model=ValidationResponse,
            summary="Validate System Configuration",
            description="Validates system configuration, folders, and model setup")
async def validate_system():
    """Get system validation status from LLM Server"""
    try:
        return await api.validate_system()
    except Exception as e:
        logger.error(f"Error validating system: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/model/initialize",
             summary="Initialize default or specified model",
             description="Initialize model for use. Uses default model from config if none specified.")
async def initialize_model(model_name: Optional[str] = None):
    """Initialize a model for use"""
    try:
        return await api.initialize_model(model_name)
    except Exception as e:
        logger.error(f"Error initializing model: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/model/initialize/embedding",
             summary="Initialize embedding model",
             description="Initialize a separate model specifically for generating embeddings")
async def initialize_embedding_model(model_name: Optional[str] = None):
    """Initialize a model specifically for embeddings"""
    try:
        return await api.initialize_embedding_model(model_name)
    except Exception as e:
        logger.error(f"Error initializing embedding model: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/model/download",
             summary="Download default or specified model",
             description="Downloads model files. Uses default model from config if none specified.")
async def download_model(model_name: Optional[str] = None):
    """Download model files to local storage"""
    try:
        # Use model name from config if none provided
        model_to_download = model_name or config["model"]["defaults"]["model_name"]
        logger.info(f"Received request to download model: {model_to_download}")

        result = await api.download_model(model_to_download)
        logger.info(f"Successfully downloaded model: {model_to_download}")

        return result

    except Exception as e:
        logger.error(f"Error downloading model: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.on_event("shutdown")
async def shutdown_event():
    """Clean up resources on shutdown"""
    if api:
        await api.cleanup()