Spaces:
Runtime error
Runtime error
File size: 6,852 Bytes
47031d7 02fd6bb 47031d7 02fd6bb 9814b43 47031d7 02fd6bb 47031d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from fastapi import APIRouter, HTTPException
from typing import Optional
from .api import InferenceApi
from .schemas import (
GenerateRequest,
EmbeddingRequest,
EmbeddingResponse,
SystemStatusResponse,
ValidationResponse,
ChatCompletionRequest,
ChatCompletionResponse
)
import logging
router = APIRouter()
logger = logging.getLogger(__name__)
api = None
@router.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
"""OpenAI-compatible chat completion endpoint"""
logger.info(f"Received chat completion request with {len(request.messages)} messages")
try:
# Extract the last user message, or combine messages if needed
last_message = request.messages[-1].content
if request.stream:
# For streaming, we need to create a generator that yields OpenAI-compatible chunks
async def generate_stream():
async for chunk in api.generate_stream(
prompt=last_message,
):
# Create a streaming response chunk in OpenAI format
response_chunk = {
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": int(time()),
"model": request.model,
"choices": [{
"index": 0,
"delta": {
"content": chunk
},
"finish_reason": None
}]
}
yield f"data: {json.dumps(response_chunk)}\n\n"
# Send the final chunk
yield f"data: [DONE]\n\n"
return StreamingResponse(
generate_stream(),
media_type="text/event-stream"
)
else:
# For non-streaming, generate the full response
response_text = await api.generate_response(
prompt=last_message,
)
# Convert to OpenAI format
return ChatCompletionResponse.from_response(
content=response_text,
model=request.model
)
except Exception as e:
logger.error(f"Error in chat completion endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
async def init_router(config: dict):
"""Initialize router with config and Inference API instance"""
global api
api = InferenceApi(config)
await api.setup()
logger.info("Router initialized with Inference API instance")
@router.post("/generate")
async def generate_text(request: GenerateRequest):
"""Generate text response from prompt"""
logger.info(f"Received generation request for prompt: {request.prompt[:50]}...")
try:
response = await api.generate_response(
prompt=request.prompt,
system_message=request.system_message,
max_new_tokens=request.max_new_tokens
)
logger.info("Successfully generated response")
return {"generated_text": response}
except Exception as e:
logger.error(f"Error in generate_text endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/generate/stream")
async def generate_stream(request: GenerateRequest):
"""Generate streaming text response from prompt"""
logger.info(f"Received streaming generation request for prompt: {request.prompt[:50]}...")
try:
return api.generate_stream(
prompt=request.prompt,
system_message=request.system_message,
max_new_tokens=request.max_new_tokens
)
except Exception as e:
logger.error(f"Error in generate_stream endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/embedding", response_model=EmbeddingResponse)
async def generate_embedding(request: EmbeddingRequest):
"""Generate embedding vector from text"""
logger.info(f"Received embedding request for text: {request.text[:50]}...")
try:
embedding = await api.generate_embedding(request.text)
logger.info(f"Successfully generated embedding of dimension {len(embedding)}")
return EmbeddingResponse(
embedding=embedding,
dimension=len(embedding)
)
except Exception as e:
logger.error(f"Error in generate_embedding endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.get("/system/status",
response_model=SystemStatusResponse,
summary="Check System Status",
description="Returns comprehensive system status including CPU, Memory, GPU, Storage, and Model information")
async def check_system():
"""Get system status from LLM Server"""
try:
return await api.check_system_status()
except Exception as e:
logger.error(f"Error checking system status: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.get("/system/validate",
response_model=ValidationResponse,
summary="Validate System Configuration",
description="Validates system configuration, folders, and model setup")
async def validate_system():
"""Get system validation status from LLM Server"""
try:
return await api.validate_system()
except Exception as e:
logger.error(f"Error validating system: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/model/initialize",
summary="Initialize default or specified model",
description="Initialize model for use. Uses default model from config if none specified.")
async def initialize_model(model_name: Optional[str] = None):
"""Initialize a model for use"""
try:
return await api.initialize_model(model_name)
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/model/initialize/embedding",
summary="Initialize embedding model",
description="Initialize a separate model specifically for generating embeddings")
async def initialize_embedding_model(model_name: Optional[str] = None):
"""Initialize a model specifically for embeddings"""
try:
return await api.initialize_embedding_model(model_name)
except Exception as e:
logger.error(f"Error initializing embedding model: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.on_event("shutdown")
async def shutdown_event():
"""Clean up resources on shutdown"""
if api:
await api.close() |